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Abstract— We propose a motion planner for cable-driven
payload transportation using multiple unmanned aerial vehicles
(UAVs) in an environment cluttered with obstacles. The planner
considers both inter-robot and robot/obstacle collisions. The
output of the planner is then tracked by our previously devel-
oped controller for payload transportation. We demonstrate the
effectiveness of our approach through simulation experiments
and an actual physical flight in a constrained environment with
obstacles. The physical flight imitates a construction task where
two multirotors carry a bridge in a cluttered environment
and place it on two construction columns. We evaluate the
performance for the proposed approach with respect to solution
quality, computational effort, and success rate in different
settings. Our experiments demonstrate the possibility of using
multirotors for complex collaborative assistance in construction
sites in the future.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are ideal for tasks
that involve accessing remote locations, which makes them
valuable collaborators in a variety of scenarios. Cable-driven
payload transportation using multiple UAVs is well suited for
collaborative assistance in construction sites such as carrying
tools [1] or supporting bridge construction by transporting
materials.

Control algorithms for payload transportation have ad-
vanced [2], [3], [4], [5], but inter-robot and robot/obstacle
collisions are often not considered. Some methods address
collision avoidance by using optimization techniques for
the cable force allocation [6], [7], [8] or convexifying the
cable constraints [9]. These either demand complex on-
board computation or are limited by predefined cable regions.
Other methods plan ahead with offline motion planners [10],
[11] to address inter-robot and robot/obstacle collisions. The
planners either use sampling-based approaches for the full
system poses, or plan formations based on kinematic control.
However, they do not reason over the load distribution
over the multirotors. Thus, they might propose unfeasible
configurations to be achieved by the planner.

We addressed the shortcomings of the mentioned methods
through our previous work [12] by leveraging quadratic
programs (QPs) and propose a QP-force allocation geometric
controller that are executed on compute-constrained multiro-
tors in realtime efficiently.
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Fig. 1. Our contribution for this paper is highlighted in the red box.
The output of the motion planner and its first order derivative define
the full reference trajectory. The controller tracks the desired payload
motions (Fd,Md) defined by the reference trajectory, and avoids inter-robot
collisions, while taking into account the planned cable states (qi0 ,ωio).

In this paper we extend our work [12] by proposing
an offline motion planner for payload transportation in an
environment cluttered with obstacles. We show our results
on different simulation experiments and a physical flight
on highly constrained embedded flight controllers in an
environment with obstacles. The physical flight imitates a
construction task where two quadrotors carry a bridge in
a cluttered environment and place it on two construction
columns.

II. BACKGROUND

This section provides necessary background for the dy-
namic model and the used control design, see [12] for details.

A. System Description

Consider a team of n quadrotors transporting a payload
with massless cables. The payload is described as a rigid
body with mass m0 and moment of inertia matrix J0. The
cables are modeled as rigid rods each with length li. The
state space vector is defined as

x = (p0, ṗ0,R0,ω0,qi,ωi)
T ∈ C, i ∈ {1, . . . , n}, (1)

where the configuration space C is defined by: the pose of
the payload p0 ∈ R3, R0 ∈ SO(3); the cable unit vector
qi ∈ R3 pointing to the quadrotor; and the payload and the
cable angular velocities are ω0 ∈ R3, ωi ∈ R3 respectively.
The control input of the full system is defined as u =
(η1, . . . ,ηn)

T ∈ U ⊂ R4n. Where ηi = (f, τx, τy, τz)
T

is the thrust and torques controls of i-th quadrotor.

B. Force Allocation Geometric Controller Overview

Our control design (see Fig. 1) extends the existing
geometric controller [4] with an optimization-based cable
force allocation method. Consider the desired control forces
and moments that track the payload reference trajectory as
Fd,Md respectively. This method reformulates the cable
forces allocation optimization problem as three consecutive
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quadratic programs (QPs). The QPs solve for the desired ca-
ble forces µid

, taking into account the inter-robot collisions,
and track Fd and Md. Thus, µid

is tracked by the i-th UAV
with a low-level controller [13].

Desired Cable Forces A significant advantage of the
QPs formulation is that a user is able to specify a desired
formation configuration based on another task objective
(e.g. obstacle avoidance). Let us define µi0 as prespecified
preferable cable forces such that

∑
i µi0 = Fd. The cost

function in the QPs can be modified as

c =
1

2
∥µid

∥2 + λ∥µi0 − µid
∥2, (2)

where the first terms minimizes the sum of norms of the
cable forces. The second term minimizes the difference
between the cable forces and the preferred ones µi0 with
λ as a weighting factor. Our previous work [12] proposed
this method for a teleoperation task where the operator can
switch to a predefined line formation to pass between two
obstacles. Here, we use a motion planner to plan for both the
desired payload poses and the preferred cable forces µi0 .

III. APPROACH

A. Problem Statement

Consider the system described in Section II-A. The state
space vector is defined by (1). The payload is trans-
ported in an environment defined by convex polytope
workspace W ⊂ R3 with convex obstacles O1 . . .ONobs .
Let X = ⟨x0,x1, . . . ,xT ⟩ be a sequence of states sampled
at time 0,∆t, . . . , T∆t and U = ⟨u0,u1, . . . ,uT−1⟩ be
a sequence of controls applied to the system for times
[0,∆t), [∆t, 2∆t) . . . , [(T−1)∆t, T∆t), where ∆t is a small
timestep and the controls are constant during this timestep.
Let us define a start state xs and a goal state xg in the
collision-free configuration space Cfree ⊂ C. Then our goal
is to transport the payload from a start to a goal state in
the minimal time T , which can be framed as the following
optimization problem

min
X,U ,T

J(X,U , T ) (3)

s.t.



xk+1 = f(xk,uk) ∀k ∈ {0, . . . , T − 1}
uk ∈ U ∀k ∈ {0, . . . , T − 1}
x0 = xs, xT = xf

xk ∈ Cfree ∀k ∈ {0, . . . , T}
∥pi − pj∥ ≥ ri + rj ∀i ̸= j,

where the cost function J(X,U , T ) can also minimize
arbitrary task objectives (e.g., energy). The first equality
constraint is the dynamic model of the system and the second
constraint limits the control input within a feasible control
space U (e.g., actuator limits). The third set of constraints
ensures that the motion connects the start and the goal states.
The last two constraints ensure a collision-free path for the
full state, where pi is the i-th quadrotor’s position. The
geometric shape of a robot is modeled as a sphere with
radius ri and the payload is modeled as a convex shape with
p0 ∈ R3 as the center of mass (CoM) position vector.

B. Overview
In order to solve the full optimization problem, we propose

to divide it into sub-problems. We extend our previous work
[12], with an offline geometric motion planner (see Fig. 1).
The planner plans the payload and the cables geometric states
jointly in the free space of the environment. The output of
the planner is interpolated and used to compute the first
order derivatives by numerical differentiation to define the
reference trajectory. The reference trajectory is tracked by
the QP-force allocation geometric controller. In particular,
the planned cable states compute the desired cable forces µi0
by rescaling qi0 such that

∑
i µi0 = Fd (see Section II-B).

The augmentation of the motion planner with the controller
ensures inter-robot and robot/obstacle collision avoidance. In
terms of the motion planner, avoiding obstacles and inter-
robot collisions are considered as a hard constraint. For
the controller, it avoids inter-robot collision while tracking
the payload reference trajectory simultaneously. However,
it considers the robot/obstacle collision avoidance as a soft
constraint by tracking µi0 as shown in (2).

C. Motion Planning
Given a start state xs and a goal state xg in an envi-

ronment with convex obstacles O1 . . .ONobs , we propose to
use a sampling-based motion planner to plan a collision-free
geometric path Xgeom for the following state vector

xgeom = (p0r ,R0r ,q10 , . . . ,qn0
)T , (4)

where xgeom ∈ R3 × SO(3) × R3n. Consequently, Xgeom
is interpolated and the first order derivatives are computed
by numerical differentiation to define the full reference
trajectory.

Consider the following relation between each desired cable
force and its corresponding cable unit vector

qi0 = −
µi0

∥µi0∥
. (5)

Thus, µi0 can be computed given the planned cable unit
vectors that corresponds to a preferred formation. Consider
distributing the magnitude of the desired motion Fd of the
payload per each cable as fi =

∥Fd∥
n , where i ∈ {1, . . . , n}

for n quadrotors. The resulting force µi0 for each cable is
computed by rescaling the planned cable unit vectors as

µi0 = −fiqi0 . (6)

We use the following two extensions to to reduce the effect
of the high dimensional state space of the payload transport
system and to find high-quality solutions.

1) State Space Representation: We propose to reduce the
state space size directly by using different representations for
part of the state space. In particular, another representation
for the unit vector qi ∈ R3 is to use the azimuth αi and
elevation γi angles, such that

qi =
(
cos(αi) cos(γi), sin(αi) sin(γi), sin(γi)

)T
, (7)

where αi ∈ [0, 2π) and γi ∈ [0, π/2). Thus, the reduced
state vector can be represented by

xr = (p0r ,R0r , α1, γ1, . . . , αn, γn)
T . (8)



TABLE I
SIMULATION RESULTS. SHOWN ARE MEAN VALUES FOR THE COST AND TIME OF THE FIRST SOLUTION OVER 10 RUNS WITH A TIMELIMIT OF 750 sec

FOR DIFFERENT SCENARIOS USING DIFFERENT NUMBER OF ROBOTS, EACH WITH STANDARD DEVIATION (SMALL GRAY).

Environment Metrics 3 robots 4 robots 5 robots 6 robots 7 robots 8 robots
Cost 5.15 0.72 5.76 0.21 4.29 0.00 4.49 0.00 4.75 0.00 4.75 0.00

Empty Time [sec] 0.05 0.03 0.05 0.01 0.04 0.02 0.04 0.01 0.05 0.00 0.05 0.01

Success Rate [%] 100 100 100 100 100 100
Cost 10.86 4.56 19.22 15.94 30.26 10.72 15.49 0.00 - -

Forest Time [sec] 11.42 10.75 33.22 32.93 297.08 114.17 631.48 4.58 - -
Success Rate [%] 100 100 80 20 - -
Cost 10.92 5.85 23.81 18.86 13.56 5.24 9.65 0.00 - -

Maze Time [sec] 0.50 0.42 6.35 6.86 40.66 37.91 172.25 0.00 - -
Success Rate [%] 100 100 100 10 - -

2) Cost Function: To converge to an optimal solution, a
cost function is required. Given two consecutive states as
xr(k) and xr(k + 1), we propose to use a cost function
that minimizes the integral of the energy between the two
states. First, let us define the qibase = (0, 0, 1)T as the desired
cable direction to carry the payload statically. Consider the
required force magnitude to carry a unit payload mass with
respect to the static case (i.e., all cables point towards qibase )
as

F (k) =
1

n

n∑
i=1

1

qibase · qi(k)
, (9)

where (·) is the dot product and n is the number of
cables. We assume a trapezoidal energy profile between two
consecutive states. Thus, the cost function is

c =
F (k) + F (k + 1)

2
∥p0(k)− p0(k + 1)∥, (10)

where ∥p0(k) − p0(k + 1)∥ is the Euclidean distance of
the payload position. The sampler will converge to the
minimum cost solution over time. The accepted samples by
the collision checker will ensure that the current formation
configuration distributes the load over the cables compared
to the static case.

After generating the plan and computing the derivatives
for the payload pose and the cable directions, the reference
trajectories are provided to the QP-force allocation geometric
controller. In particular, the payload pose and velocity ref-
erence trajectories are used to compute Fd and Md, while
the planned (αi, γi) for each cable are used to compute the
cable directions qi0 using (7). Finally, the preferred desired
cable forces µi0 are computed with (6) for each cable, which
is tracked the QPs based on the cost function (2).

IV. EXPERIMENTAL RESULTS

To validate the performance of our method, we provide
three simulation experiments and a physical flight. In par-
ticular, we implemented the sampling-based motion planner
using OMPL [14], a widely used C++ library, and meshcat
to visualize the output.

The simulation environments are bounded, where the
bounds only limit the translational part of the payload, i.e.,
the cables and the robots are allowed to be outside.

We use RRT* as the sampling motion planner for all
our experiments. All environments use simple geometric

sphere, cylinder, and box shapes to model the quadrotors, the
obstacles, the payload, and the cables for efficient collision
checking. Collision checking is done using FCL (Flexible
Collision Library) in all cases.

All scenarios for the motion planning experiments were
solved on a workstation (AMD Ryzen Threadripper PRO
5975WX @ 3.6 GHz, 64 GB RAM, Ubuntu 22.04).

A. Simulations

For the simulations, we consider a triangular rigid payload
(8 × 8 × 1 cm) carried by multiple (up to 8) quadrotors
with cables. We test our motion planning approach on three
different scenarios, see Table I and the supplemental video:
obstacle-free (i.e., Empty), a random forest-like environment,
and a maze-like environment, where the payload is trans-
ported through a narrow passage of two cylindrical obstacles.

Performance Evaluation: We summarize the main results
as follows. The motion planner finds first solutions with high
success rates and relatively low costs quickly for obstacle-
free scenarios.

In cluttered environments (forest and maze) the success
rate decreases as the number of robots increase. Two exam-
ples show the convergence behavior of the solution quality
(cost) in Fig. 2. However, our approach fails to find solutions
for seven and eight robots, only. This is due to the curse-of-
dimensionality and our choice of using rejection sampling in
OMPL. With rejection sampling, the probability of sampling
pairwise collision-free cable angles quickly becomes zero as
the number of robots increase, if the payload is very small
in size as in our simulations. Sampling valid states directly
can mitigate the effect and is an interesting avenue for future
work.

Currently we define the full goal state configuration, and
we believe this provides unfair hints for the planner, as there
might be other goal states with lower costs. Moreover, speci-
fying the full goal configuration requires domain knowledge
to set up the problem, which becomes complex with more
robots. Instead, defining goal regions for the cable angles
will provide better solutions quality.

B. Physical Flights

We are interested in imitating a construction task, see the
supplemental video. Two quadrotors are required to initially
take off from the ground and carry a bridge (i.e., a rod).
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Fig. 2. Examples for the forest and maze environment with four and
five robots respectively. The plot shows the mean and standard deviation
(shaded) for cost convergence over runtime (log-scale), if the success rate
is over 50%.

Then, they carry the rod through a narrow passage between
two obstacles and place it on top of two construction columns
(i.e., the blue boxes) and finally, they land.

We generate an offline motion plan for two quadrotors
carrying a rod payload through obstacles. Then, we provide
the plan to be executed by the optimization-based force
allocation geometric controller. To demonstrate the benefits
of planning with the cable states, we compare two different
executions: one that only tracks the given reference of
the payload pose and one that includes the full geometric
reference state including the planned cable states.

1) Setup: We use an 8 g rigid rod payload for our ex-
periments. Moreover, We use quadrotors of type Bitcraze
Crazyflie 2.1 (CF). These are small (9 cm rotor-to-rotor) and
lightweight (34 g) products that are commercially available.
The physical parameters are identified in prior work [15].
We rely on our prior software infrastructure [12], which
includes the control algorithm in C to run directly on-board
the STM32-based flight controller (168MHz, 192 kB RAM),
and Crazyswarm2 to communicate with the robots on the
host side. The positions of both quadrotors and the pose of
the payload are estimated using a motion capture system and
streamed (along with the setpoints from the motion plan) to
both quadrotors via broadcast communication at 100Hz.

2) Experimental Results: When we provide the planned
cable states to the controller, the payload tracking errors
are 12.4 cm and 11.3◦. However, if we provide the planned
payload pose only, the tracking errors increase to 14.5 cm
and 15.9◦. Thus, using the full geometric reference state and
in particular the planned cable states provide more accuracy
for tracking the trajectory while avoiding the obstacles. This
effect is also visually apparent during the takeoff sequence,
which becomes smoother with the planned cable states.

V. CONCLUSION

In this paper we present a geometric motion planner for
the cable-suspended payload transport using multiple UAVs
in an environment with obstacles. We rely on sampling-based
approaches to generate a plan for the geometric states of the
system while avoiding obstacles and inter-robot collisions.
The plan is then tracked by the QP-force allocation geometric
controller from our previous work.

We demonstrate the feasibility and effectiveness of our
approach with three simulation experiments and an actual
physical flight. The physical flight imitates a construction
task where two quadrotors carry a bridge in a cluttered
environment and place it on two construction columns.

Our results indicate the potential of using our approach
for more complex construction tasks with enhancements in
scalability and solution quality. In the future, we are aiming
to extend our planner to more realistic construction scenarios,
including cases where multiple robot teams operate in the
same shared environment.
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