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Abstract— We consider time-optimal motion planning for dy-
namical systems that are translation-invariant, a property that
holds for many mobile robots, such as differential-drives, cars,
airplanes, and multirotors. Previous benchmarks have typically
focused on comparing approaches within the same algorithmic
class, e.g., sampling-based approaches may be benchmarked
using the open motion planning library (OMPL). We provide
the first benchmark that compares search-, sampling-, and
optimization-based time-optimal motion planning on multiple
dynamical systems in different settings.

I. INTRODUCTION

Motion planning for robots with known kinodynamics re-
mains challenging, especially when a time-optimal motion is
desired or many obstacles are present. Consider the example
of a simple unicycle dynamical model in 2D (3-dimensional
state space and 2-dimensional control space). Finding the
time-optimal solution is surprisingly challenging for state-of-
the-art methods when constraining the control space to model
a plane with a malfunctioning rudder, i.e., with a positive
minimum speed and asymmetric angular velocity limits.

Current planning approaches are sampling-based, search-
based, optimization-based, or hybrid. Each of these methods
has their strengths and weaknesses. Sampling-based planners
can find initial solutions quickly and have strong guaran-
tees for convergence to an optimal solution. However, in
practice the initial solutions are far from the optimum, the
convergence rate is low, and the solutions typically require
some post-processing. Search-based approaches can remedy
those shortcomings by connecting precomputed trajectories,
so-called motion primitives, using A* or related graph search
algorithms. Yet, the seemingly strong theoretical guarantees
only hold up to the selected discretization of the state
space and the precomputed motions. Moreover, scaling this
approach to higher dimensions has proved difficult and
requires careful, frequently hand-crafted design of the motion
primitives. This curse of dimensionality can be overcome by
optimization-based planners, which scale polynomially rather
than exponentially with the number of state dimensions.
However, these planners are, in the general case, only locally
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optimal and thus require a good initial guess both for the
trajectory and time horizon.

In this paper we contribute the, to our knowledge, first
benchmark that compares the three major kinodynamic mo-
tion planning techniques on the same problem instances with
the objective of computing time-optimal trajectories.

II. PROBLEM DESCRIPTION

We consider states x = [xt,xr] ∈ X ⊂ Rdw × Rdx−dw ,
where the first dw dimensions indicate the translation in the
workspace (dw ∈ {2, 3}) of the robot and the remaining
dx − dw dimensions may contain orientation or derivatives.
The robot can be actuated by actions u ∈ U ⊂ Rdu . We
consider dynamics that are translation invariant, with

ẋ = f(xr,u), (1)

where f only depends on xr and not on xt. In order to
employ gradient-based optimization, we assume that we can
compute the Jacobian of f with respect to xr and u. The
collision-free state space is Xfree ⊆ X .

Almost all generic kinodynamic motion planners assume
a discrete-time formulation with zero-order hold, i.e., the
applied action remains constant during a timestep. We can
then frame the dynamics Eq. (1) as

xk+1 ≈ step(xk,uk) ≡ xk + f(xr
k,uk)∆t, (2)

using a small timestep ∆t so that the Euler approximation
holds sufficiently well.

Let X = ⟨x0,x1, . . . ,xT ⟩ be a sequence of states sampled
at times 0,∆t, . . . , T∆t and U = ⟨u0,u1, . . . ,uT−1⟩ be
a sequence of actions applied to the system for times
[0,∆t), [∆t, 2∆t), . . . , [(T − 1)∆t, T∆t). Then our goal of
moving the robot from its start state to a goal state can be
framed as the following optimization problem:

min
U,X,T

J(U,X, T ) (3)

s.t.


xk+1 = step(xk,uk) ∀k ∈ {0, . . . , T − 1}
uk ∈ U ∀k ∈ {0, . . . , T − 1}
xk ∈ Xfree ∀k ∈ {0, . . . , T}
x0 = xs; xT = xf ,

where xs ∈ X is the start state and xf ∈ X is the goal state.
The objective function J is application specific; we will focus
on time-optimal trajectories, i.e., J(U,X, T ) = T∆t.

Example 1: Consider a unicycle robot with state x =
[x, y, θ] ∈ X , i.e., x, y are the position and θ is the
orientation. The actions are u = [v, ω] ∈ U , i.e., the

https://github.com/IMRCLab/kinodynamic-motion-planning-benchmark
https://github.com/IMRCLab/kinodynamic-motion-planning-benchmark


speed and angular velocity can be controlled directly. The
dynamics are translation invariant: ẋ = [v cos θ, v sin θ, ω].
The choice of U can make this low-dimensional problem
challenging to solve. For example, consider a plane-like
case (positive minimum speed, i.e., 0.25 ≤ v ≤ 0.5m/s)
with a malfunctioning rudder (asymmetric angular speed, i.e.,
−0.25 ≤ ω ≤ 0.5 rad/s).

III. KINODYNAMIC MOTION PLANNERS OVERVIEW

There are several conceptually different algorithmic ap-
proaches to solving kinodynamic motion planning problems.

Search-based approaches rely on existing methods for
discrete path planning, such as A* and variants. The common
approach is to generate short trajectories (motion primitives)
using a state lattice (i.e., pre-specified discrete state com-
ponents) [2]. Each primitive starts and ends at a grid cell
and swept cells can be precomputed for efficient collision
checking. Once motion primitives are computed, existing
algorithms such as A* or the anytime variant ARA* can
be employed without modification.

These methods can solve Eq. (3) if xs and xf fall
within the chosen lattice and retain very strong theoretical
guarantees on both optimality and completeness with respect
to the chosen primitives. The major challenge is to select
and compute good motion primitives, especially for high-
dimensional systems [3].

Sampling-based approaches build a tree T rooted at the
start state xs. During tree expansion, i) a random state
xrand in the state space is sampled, ii) an existing state
xexpand ∈ T is selected, and iii) a new state xnew is added
with a motion that starts at xexpand and moves towards xrand.
The classic version of this approach, kinodynamic RRT [4],
is probabilistically complete when using the correct variant.
Asymptotic optimality can be achieved when planning in
state-cost space (AO-RRT) [5] or by computing a sparse
tree (SST*) [6]. These methods rely on a distance function
d : X × X → R and often use fast nearest neighbor data
structures such as k-d trees for efficiency. The mentioned
algorithms work without solving a two-point boundary value
problem, which is computationally expensive.

Sampling-based approaches are designed to explore the
state space as fast as possible and typically do not use a
heuristic function, unlike search-based methods. The explo-
ration/exploitation tradeoff is typically controlled by using
goal-biasing instead. These approaches cannot solve Eq. (3)
directly, because the probability to reach xf by sampling is
zero. Instead, the goal constraint is typically reformulated to
xT ∈ Xf using a goal region Xf rather than a goal state xf .

Optimization-based approaches locally optimize an ini-
tial trajectory using the gradients of J , unlike the previous
gradient-free methods. Dynamics, collision avoidance, goal
constraints, and control limits are modeled with piece-wise
differentiable functions. In CHOMP, Hamiltonian Monte
Carlo is used to perturb local solutions [7], while Tra-
jOpt [8] and GuSTO [9] rely on sequential convex pro-
gramming (SCP). Trajectories can also be computed with
optimal control solvers that rely on Differential Dynamic

Programming [10] or extend the linear quadratic regulator
to nonlinear systems [11].

Both STOMP [12] and KOMO [13] use only the (geo-
metric) state sequence Xt as decision variables and support
kinodynamic systems via constraints. All optimization-based
approaches require an initial guess as a starting trajectory, but
this guess does not need to be kinodynamically feasible.

These approaches can solve Eq. (3) directly for a differ-
entiable J and given number of timesteps T . The observed
solution quality is significantly higher (e.g., in terms of
smoothness) compared to sampling-based or search-based
approaches. Moreover, optimization-based approaches do not
suffer from the curse of dimensionality directly, although
higher dimensions might result in more local optima.

Hybrid approaches combine two or more ideas. One
can combine search and optimization [14], search and sam-
pling [15], [16], [17], or combine sampling and optimiza-
tion [18]. For some dynamical systems, using insights from
control theory for the motion planning can also be beneficial
[19], [20], [21], but requires domain knowledge. Motion
planning can also benefit from using machine learning for
computational efficiency [22], [23].

Our recent approach, kMP-db-A* [1], combines ideas from
search-, sampling-, and optimization-based methods and uses
the translation-invariance of mobile robot dynamics.

IV. BENCHMARK RESULTS

We compare different motion planners on the same scenar-
ios. For fair comparison, we share code and data structures
as much as possible, use the respective state-of-the-art open-
source implementations, and focus on settings where the
dynamics and not the collision-checking create challenges.

A. Dynamical Systems
Unicycle (1st order) has a 3-dimensional state space

[x, y, θ] ∈ SE(2) and a 2-dimensional [v, ω] ∈ U ⊂ R2

control space with dynamics defined in [24, Eq. (13.18)].
The simplest version (v0) uses bounds v ∈ [−0.5, 0.5] m/s
and ω ∈ [−0.5, 0.5] rad/s. More interesting variants are a
plane-like version (v1) using a positive minimum speed of
0.25m/s, and a plane-like version with a rudder damage (v2)
(ω ∈ [−0.25, 0.5] rad/s).

Unicycle (2nd order) has a 5-dimensional state space
[x, y, θ, v, ω] ∈ X ⊂ R5, a 2-dimensional [v̇, ω̇] ∈ U ⊂ R2

control space, and dynamics defined in [24, Eq. (13.46)]. Our
version (v0) uses v ∈ [−0.5, 0.5] m/s, ω ∈ [−0.5, 0.5] rad/s,
v̇ ∈ [−0.25, 0.25] m/s2, and ω̇ ∈ [−0.25, 0.25] rad/s2.

Car with trailer has a 4-dimensional state space
[x, y, θ0, θ1] ∈ X ⊂ R4, a 2-dimensional [v, ϕ] ∈ U ⊂ R2

control space, and dynamics and visualization given in [24,
Eq. (13.19), Fig. 13.6]. We add an additional constraint
|∠(θ0, θ1)| < π/4 that avoids that the angle between the car
and the trailer exceeds a threshold. Our version (v0) uses
v ∈ [−0.1, 0.5] m/s, ϕ ∈ [−π/3, π/3], L = 0.25m, and
d1 = 0.5m, where L and d1 are defined in [24].

Quadrotor has a 13-dimensional state space (pose and
first order derivatives using a Quaternion representation), a 4-
dimensional control space (force for each of the four motors),



TABLE I
BENCHMARK RESULTS COMPARING SUCCESS RATE (p), TIME FOR THE FIRST FOUND SOLUTION (tst), THE COST OF THE FIRST FOUND SOLUTION

(Jst), AND THE COST OF THE SOLUTION AFTER 5min (Jf ). TIME AND COST ARE THE MEDIAN OVER 10 TRIALS. BEST RESULTS ARE BOLD.

# System Instance SST* SBPL geom. RRT*+KOMO kMP-db-A*
p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s]

1
unicycle 1st order, v0

park 1.0 1.2 5.9 3.5 1.0 0.0 6.2 6.2 1.0 3.1 5.3 3.2 1.0 0.9 3.2 3.1
2 kink 1.0 1.2 47.5 17.9 1.0 0.2 22.6 22.6 1.0 9.9 24.8 21.7 1.0 5.5 15.4 13.1
3 bugtrap 1.0 1.1 63.3 30.0 1.0 1.4 36.8 36.6 1.0 10.8 40.3 22.2 1.0 21.6 23.8 22.1
4 unicycle 1st order, v1 kink 0.8 38.5 43.2 34.3 0.0 — — — 1.0 11.9 23.9 23.7
5 unicycle 1st order, v2 wall 0.8 29.9 45.2 37.4 0.0 — — — 1.0 7.3 20.0 18.0
6

unicycle 2nd order
park 1.0 4.7 14.4 7.5 1.0 5.5 10.6 6.1 1.0 7.9 6.8 6.1

7 kink 1.0 2.6 71.0 59.7 0.5 18.1 24.6 21.1 1.0 10.7 20.4 19.8
8 bugtrap 1.0 5.2 66.8 51.1 1.0 23.2 39.9 27.2 1.0 40.6 33.9 25.9
9

car with trailer
park 0.6 24.6 13.6 13.6 1.0 15.6 10.8 6.2 1.0 10.0 5.7 5.4

10 kink 1.0 9.1 70.8 66.5 0.1 217.5 174.4 130.8 1.0 94.8 34.1 24.2
11 bugtrap 1.0 0.7 47.5 43.8 0.0 — — — 1.0 8.3 21.5 19.4
12 quadrotor empty 0.0 — — — 1.0 207.2 2.6 2.6 1.0 131.0 1.6 1.6

and dynamics defined in [25, Eq. (1)]. We use the parameters
of the Crazyflie quadrotor with limits on the motor forces,
velocity, and angular velocity. Note that the low thrust-to-
weight ratio of 1.4 is very challenging for kinodynamic
motion planning and that problem settings with a harsh initial
condition prevent the use of specialized methods [26], [27].

We use ∆t = 0.1 s for all dynamical systems except the
quadrotor, which uses ∆t = 0.01 s.

B. Environments

For most of the dynamical systems, we consider three
environments, which are inspired by the common use-cases
in the related literature. For the v2 unicycle, we use the wall
environment. For the quadrotor, we use an empty environ-
ment without obstacles. The scenario requires the quadrotor
to recover from a harsh initial condition with an upside-
down initial rotation and nonzero initial first derivatives.
All environments only use simple geometric box shapes for
efficient collision checking. The environments are bounded,
where the bounds only limit the translational part of the state,
i.e., parts of the robots are allowed to be outside.

C. Algorithms

For a search-based approach, we rely on SBPL (Search-
based Planning Library), a commonly used C++ library with
integration in the Robot Operating System (ROS). SBPL
contains an example for unicycles, although the used dy-
namics do not match the ones from [24, eq. 13.18]. Thus, we
generate our own primitives using optimization. Moreover,
we make minor adjustments to the heuristic to enable time-
optimal anytime planning using the provided implementation
of ARA* in SBPL. Due to limits in SBPL, we limit our
evaluation to the v0 first order unicycle.

For a sampling-based approach, we rely on OMPL (Open
Motion Planning Library), a widely used C++ library with
integration in ROS through MoveIt. OMPL implements
several kinodynamic planners, including SST* [6], which
we use. As part of this work, we contribute minor changes
to allow time as an optimization objective. Since sampling-
based kinodynamic approaches cannot reach a goal state, we

use a goal region instead that we verify to be small enough
such that an optimizer can find an exact solution.

For an optimization-based approach, we rely on RAI
(Robotic AI), a C++ library that implements KOMO and
nonlinear optimization algorithms. For each of the dynamical
systems, we implement the appropriate constraints and their
derivative computation. In case of the trailer and the quadro-
tor, we add parts of the actions as decision variables (angle
ϕ and motor forces, respectively); otherwise the decision
variables are the state sequences only. As an initial guess,
we use a geometric solution as found by RRT* of OMPL.
This combination of geometric RRT*+KOMO is anytime like
the other approaches we compare to.

For kMP-db-A*, we use our implementation [1] that uses
data structures provided in OMPL to represent states and for
nearest neighbor computation.

The benchmark infrastructure is written in Python and
all tuning parameters can be found in the open-source
repository. Collision checking is done using FCL (Flexible
Collision Library) in all cases. All approaches use the
Euler integration Eq. (2), although KOMO uses an implicit
formulation by design.

D. Benchmark

We execute our benchmark on a desktop computer with
AMD Ryzen 9 3900X (3.8GHz) and 32GB RAM. Our
results are summarized in Table I.

We summarize the main results as follows. SBPL can
compute results very quickly and consistently. The initial
solution quality is very high, but due to the limited number
of primitives, the solution does not improve much over time
(rows 1 – 3, Table I). The approach is not as general as
the other ones, and we were unable to use it for all of
our dynamical systems. SST* can find an initial solution
very quickly; however the solution quality is initially poor,
especially with higher-dimensional systems (rows 6–11). The
convergence is slow – our 5min timeout was not sufficient
for SST* to fully converge in any of the cases. Geometric
RRT*+KOMO can find near-optimal initial solutions, but
does not work well in instances that require long trajectories
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Fig. 1. Success rate and solution cost over runtime (log-scale) for the
unicycle (1st order) dynamical system in the kink environment (row 2 in
Table I). The line is the median and the shaded region shows the first/third
quartile over all trials that found a solution so far (up to 10 in total).

and fails if the geometric initial guess is not close to a
dynamically feasible motion. For example, finding an initial
solution in the kink and bugtrap examples (rows 7, 8) took
significantly longer than parallelpark. Another drawback is
that this approach is incomplete, as visible for the v1 and v2
unicycle systems (row 4 and 5) and not globally optimal, e.g.,
row 10 and 11 show a very poor solution quality after 5min.
kMP-db-A* converged to the lowest-cost solution during the
time limit in all cases. At the same time, it found the highest-
quality first solution in all cases, although it often took more
time to compute an initial solution than the other algorithms.

For brevity, Table I does not include any standard devia-
tion. In general, we found that SBPL has almost no variance,
SST* has a very high variance, and KOMO and kMP-db-A*
are somewhere in between the two extremes. One example
that includes the convergence behavior as well as the variance
is shown in Fig. 1.

V. CONCLUSION

We believe that benchmarking approaches across method-
ologies is important. This requires us to define scenarios and
objectives that are independent of a concrete library such as
OMPL. For practitioners, our benchmarks can identify suit-
able algorithms for kinodynamic planning; for researchers,
they provide insights and new ideas for hybrid planners.
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