Lighthouse Positioning System: Dataset, Accuracy, and Precision for UAV Research

Lighthouse V1.

Lighthouse V2.

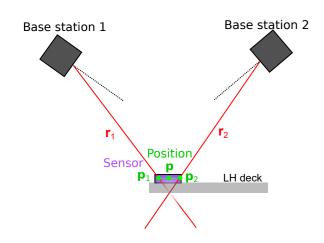
30 mm

Lighthouse positioning deck.

Introduction

Lighthouse (LH) vs. Motion Capture (MoCap):

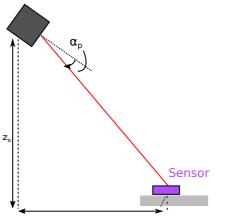
- Significantly cheaper +
- + Fully distributed operation
- Accuracy, precision not quantified for robotics applications

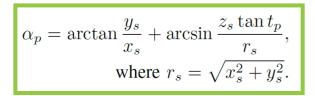

This paper presents:

- a Crazyflie-captured dataset of the LH system
- an analysis of the accuracy and precision vs MoCap

Positioning Methods

The system consist of two parts:


- 1. Two LH basestations:
 - V1 2 rotating drums with each one plane
 - V2 1 rotating drum with 2 planes on different angles
- 2. Sensor array on the Lighthouse positioning expansion deck for the Crazyflie.


Crossing Beam Method (C.B.)

- Two LH Base Stations
- Intersection of both light planes

$$p_{1,s}, p_{2,s} = rgmin_{p_1 \in r_{1,s}, p_2 \in r_{1,s}} \|p_1 - p_2\|_2$$

- Extended Kalman Filter (EKF)
- Input raw IR light planes
- Measurement model

Test Setup

Flight arena:

- Mocap (7x7x3m; 6 Qualysis miques m3)
- Lighthouse (1.5x1.5x1.5m; V1 and V2)

UAV:

- Crazyflie 2.1 ٠
- Lighthouse deck
- Active Marker Deck
- µSD-card deck

Resources and References

The Lighthouse positioning system's Base Stations are developed by Valve: www.valvesoftware.com/en/index/base-stations

The dataset and code used in the test can be found: www.github.com/bitcraze/positioning_dataset The Crazyflie and its accessories are from Bitcraze AB: www.bitcraze.io The MoCap cameras are from Qualysis: www.qualisys.com/cameras/miqus Original C.B. method is inspired by the work of: www.github.com/ashtuchkin/vive-diy-position-sensor All authors are with Bitcraze AB, Sweden. Email: firstname@bitcraze.io or all@bitcraze.io

Authors

Arnaud Taffanel, Barbara Rousselot, Jonas Danielsson, Kimberly McGuire, Kristoffer Richardsson, Marcus Eliasson, Tobias Antonsson, Wolfgang Hönig

Data Collection

The data was collected in two ways:

- External Motion: Movement of the Crazyflie on long rod
- Flight: The crazyflie in flight with a sweeping pattern and randomly sampled way-points

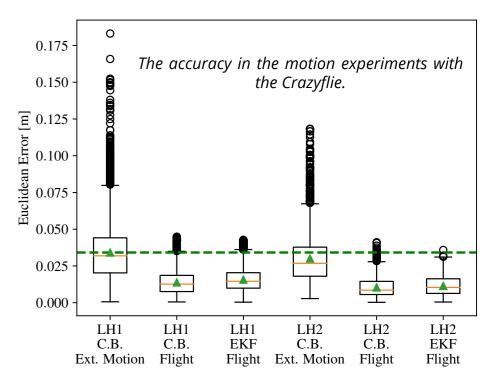
The type of data logged on the µSD-deck:

- Synchronized 100 Hz: Gyroscope and Acceleration
- Event-based streams: raw LH Angles and position by C.B. and EKF

Data was excluded when either events occurred:

- 1. No Lighthouse data was received by the lighthouse deck
- 2. No tracking by the MoCap system

Hardware used for data collection.


	LightHouse 1		LightHouse 2		MoCap
	C.B.	EKF	C.B.	EKF	_
Freq. [Hz] Jitter [mm]	$30 \pm 2.4 \\ 0.6$	N.A. 3.9	34 ± 18 0.3	N.A. 0.7	300 ± 0.1 0.1

Sample frequency and jitter for a stationary setting.

Results

Observations:

- The sample frequency STD is higher for C.B. for LH2 because of the plane interference.
- The mean and median Euclidean error are in all experiments about 2 - 4 cm.
- External motion outliers of 18 cm were observed for the external motion due to faster motions and worse observability.
- Outliers during flight is 5 cm.
- The two methods C.B. and EKF have a similar accuracy.
- LH2 has higher accuracy compared to LH1.

Dbitcraze