
Lighthouse Positioning System: Dataset, Accuracy, and Precision for
UAV Research

Arnaud Taffanel, Barbara Rousselot, Jonas Danielsson, Kimberly McGuire, Kristoffer Richardsson,
Marcus Eliasson, Tobias Antonsson, and Wolfgang Hönig

Abstract— The Lighthouse system was originally developed
as tracking system for virtual reality applications. Due to
its affordable price, it has also found attractive use-cases in
robotics in the past. However, existing works frequently rely
on the centralized official tracking software, which make the
solution less attractive for UAV swarms. In this work, we
consider an open-source tracking software that can run on-
board small Unmanned Aerial Vehicles (UAVs) in real-time and
enable distributed swarming algorithms. We provide a dataset
specifically for the use cases i) flight; and ii) as ground truth for
other commonly-used distributed swarming localization systems
such as ultra-wideband. We then use this dataset to analyze both
accuracy and precision of the Lighthouse system in different
use-cases. To our knowledge, we are the first to compare two
different Lighthouse hardware versions with a motion capture
system and the first to analyze the accuracy using tracking
software that runs onboard a microcontroller.

I. INTRODUCTION

Research and development for aerial swarms often require
reproducible laboratory settings, at least in the early stages.
Frequently, a motion capture system is used to mimic GPS
indoors [1]. However, these positioning systems are quite ex-
pensive and introduce a centralized bottleneck, which make
them difficult to use in classrooms, low-budget labs, or for
research on fully distributed and resilient systems. The Valve
Lighthouse system (LH) was first introduced to revolutionize
virtual reality, but has also found its use in robotics [2–4]. It
is about one order of magnitude cheaper than motion capture
systems, easier to transport, and allows fully distributed
operation as robots can compute their positions without a
central computer.

When flying many robots in a small volume, the accuracy
of the position tracking becomes very important. The accu-
racy of the LH has been determined before using the official
bulky tracking device and centralized software [5–10]. We
are interested in quantifying the performance using small
custom trackers (similar to [11]) with open-source software
(similar to [12]). In contrast to existing work, our open-
source software is designed to run in real-time onboard small
UAVs — we rely on the Crazyflie 2.1.1 To this end, we
provide a dataset that includes Lighthouse data (raw and
onboard processed), motion capture ground truth in different
scenarios (stationary, manual movement, flight) using the two
available hardware versions of LH. We also contribute our

All authors are with Bitcraze AB, Sweden.
Email: firstname@bitcraze.io or all@bitcraze.io
Dataset and code are available at: https://github.com/bitcraze/positioning

dataset.
1https://store.bitcraze.io/products/crazyflie-2-1

analysis of the data to quantify the precision (also known as
jitter) and accuracy of the system.

II. LIGHTHOUSE POSITIONING SYSTEM

In this section we first introduce the hardware of the Light-
house (SteamVR) base stations2 and the Lighthouse sensor
board3. Afterwards, we specify the Lighthouse positioning
system algorithms for estimating the Crazyflie’s position
by using the crossing beam method (C.B.) or by using an
extended Kalman filter (EKF).

Fig. 1. Pictures and operational principle of the two Lighthouse positioning
system versions. LH1 is shown in a) and has two rotating drums creating
IR light planes that are perpendicular to each other c) and d). LH2 is shown
in b) and has just one rotating drum with the two sweep planes angled at a
tilt angle t shown in e) and f).

2https://www.vive.com/eu/accessory/base-station2/, ... /basestation/
3https://www.bitcraze.io/products/lighthouse-positioning-deck/

https://github.com/bitcraze/positioning_dataset
https://github.com/bitcraze/positioning_dataset
https://store.bitcraze.io/products/crazyflie-2-1
https://www.vive.com/eu/accessory/base-station2/
https://www.bitcraze.io/products/lighthouse-positioning-deck/

A. Hardware
The Lighthouse base stations contain drums which rotate

infrared (IR) light planes that are captured by the IR receivers
on the Lighthouse sensor board mounted on the robot (so-
called deck). Currently, there are two versions:
• V1 (Fig. 1a) has two rotating drums with each carrying

one sweep (Fig. 1c and d). The rotating drums of two
base stations are synced with each other by a sync cable
or visual line of sight. This paper will refer to this
version as LH1.

• V2 (Fig. 1b) has one rotating drum with two planes
each at a different angle (Fig. 1e and f). Depending on
the channel configuration of the base station, the drums
rotate at a slightly different rate. Thus, light planes of
different base stations may periodically collide. This
paper will refer to this as LH2.

Table I shows the the tilt angles (tp) of the IR light planes
and the drum’s rotation matrices (Rd) for both LH1 and LH2.

TABLE I
CHARACTERISTICS OF LH1 AND LH2 WITH I BEING AN IDENTITY

MATRIX.

Version: LH1 LH2
Light Plane: 1st 2nd 1st 2nd

tp 0 0 −π/6 π/6

Rd I

1 0 0
0 0 1
0 −1 0

 I I

The Lighthouse deck, see Fig. 2, contains 4 sensors that
are able to detect passing IR light planes from both LH1 and
LH2. The received signals are decoded by an FPGA, which
transmits the timestamps, pulse-width, and, for LH2, the
decoded base station synchronization time to the Crazyflie.
On the STM32F4 chip of the Crazyflie, the data is processed
to plane sweep angles, which are used for the position
estimation either by the C.B. method (Section II-B) or the
EKF (Section II-C). There are also calibration models for
LH1 and LH2 that are implemented in the firmware of the
Crazyflie4, which will not be covered in detail in this paper.

Fig. 2. Lighthouse deck with 4 TS4231 IR receivers.

B. Crossing Beam Method
The crossing beam method is developed by the open-

source community5 for LH1 and has been extended by us to

4https://github.com/bitcraze/crazyflie-firmware
5https://github.com/ashtuchkin/vive-diy-position-sensor/

Fig. 3. The two position estimation methods, where a) depicts the crossing
beam method (C.B.) and b) depicts state variables necessary for the EKF’s
sweeping beam measurement model.

work for LH2 on the Crazyflie. The method needs two base
stations to be in direct line of sight with the Lighthouse deck
on the Crazyflie (see Fig. 3a). The intersection of the two
light planes of the base station (b) to one of the Lighthouse
deck’s sensor (s) results in a ray (rrr′b,s) that points towards
the Lighthouse deck. The ray’s origin and direction are then
converted to the global coordinate system (rrrb,s) by using the
rotation matrix (Rb) and translation (tttb) of the base station,
i.e., with slight abuse of notation:

rrrb,s = Rb · rrr′b,s + tttb. (1)

Thus, the rays of the two base stations that are perceived
by sensor s in global coordinates are rrr1,s and rrr2,s. The
position ppps = (xs, ys, zs)

> of sensor s is then calculated
by first solving6 the following optimization problem

ppp1,s, ppp2,s = arg min
ppp1∈rrr1,s, ppp2∈rrr1,s

‖ppp1 − ppp2‖2 (2)

to compute the two points ppp1,s and ppp2,s on the two rays
that are the closest to each other. Then, we compute ppps and
estimate the error δ using

ppps =
ppp1,s + ppp2,s

2
and δ = ‖ppp1,s − ppp2,s‖2, (3)

respectively. Here, the position of the sensor (ppps) is esti-
mated by using the middle between the two closest points.
Afterwards, the average of the estimated position of all the
sensors (s = 0 . . . 3) is used as a measured position. For
our analysis, we rely on the estimated error (δ) to filter the
measured data.

C. EKF Lighthouse Measurement model

When using the EKF implementation on the
Crazyflie [13], each IR light plane p can be used as a
measurement. This enables the Crazyflie to fly with only
one base station. This section explains the measurement
model that is used for our implementation.

The observation model (see Fig. 3b) maps the relevant part
of the EKF state, the estimated xs, ys, and zs components
of the sensor position in the global coordinate frame, to the

6http://geomalgorithms.com/a07- distance.html#Distance-between-Lines

https://github.com/bitcraze/crazyflie-firmware
https://github.com/ashtuchkin/vive-diy-position-sensor/
http://geomalgorithms.com/a07-_distance.html#Distance-between-Lines

measured observations αp:

αp = arctan
ys
xs

+ arcsin
zs tan tp

rs
, (4)

where rs =
√
x2s + y2s . (5)

The measurement model is linearized by the Jacobian:

gggp =

(
∂αp

∂xs
,
∂αp

∂ys
,
∂αp

∂zs

)
(6)

gggp =

(
−ys − xszsqp

r2s
,
xs − yszsqp

r2s
, qp

)
(7)

with: qp =
tan tp√

r2s − (zs tan tp)2
(8)

This Jacobian is first rotated to the coordinate system of
the base stations with the drum’s rotation matrix (Rd, see
Table I) and the rotation matrix of the orientation of the
base station itself (Rb):

ggg′p = (Rd ·R−1b)−1 · gggp = Rb ·R−1d · gggp. (9)

With the measurement model, the characteristics of Ta-
ble I, and the measured sweep angles of each sensor, the
EKF is able to estimate the position of the Crazyflie.

III. DATA COLLECTION SETUP

In this section we introduce our flight area configuration
with the LH base stations and the ground truth measurement,
as well as the hardware configuration of the Crazyflie used
for the data collection.

A. Flight Area and Hardware Setup

All experiments are conducted in a 7 m× 7 m× 3 m flight
space that is equipped with a motion capture system (6
Qualisys Miqus M3)7 and has no natural light that might
interfere with the LH or motion capture (Fig. 4). Note that
the Crazyflie flight area (1.5 m× 1.5 m× 1.5 m) was placed
such that it flew in the middle of the LH’s systems field
of view and that it was measurable by the motion capture
system for ground truth.

Both LH and motion capture operate using infrared light,
which makes using both of them simultaneously difficult and
has motivated previous studies to use an industrial serial
manipulator to generate ground truth data rather than a
motion capture system [6]. When using a motion capture
system in its default mode, where an IR ring around the
cameras is active, the LH sensors cannot perceive the beams
from the LH base stations, as they use the same spectrum. We
found that this interference can be avoided entirely by using
active markers: instead of using the classical retro-reflective
markers, we rely on IR LEDs as markers and disable the
IR ring around the motion capture cameras. As long as the
radiation cone of the IR LEDs does not include the LH
sensors, the LH perception is unimpaired.

In practice, we use the following commercially available
off-the-shelf hardware8. A Crazyflie 2.1 with the extension

7https://www.qualisys.com/cameras/miqus/
8https://www.bitcraze.io

Fig. 4. Photos and indications of a) the closeup of the Lighthouse setup
in the flight area and b) of the full flight area with Qualisys motion capture
(MoCap) cameras.

Fig. 5. Picture of the Crazyflie used for data collection with (top to bottom)
an active marker deck, a Lighthouse deck and a uSD-card deck, which were
kept together with long male pin headers.

boards (so-called “decks”) mounted on top: SD-card deck,
Lighthouse deck, and an active marker deck (Fig. 5). The
active marker deck has to be above the LH deck to keep the
IR LED radiation cone outside the LH sensors. The micro
SD card deck is used to log the raw data that we receive
onboard the Crazyflie in a space-efficient, binary encoding,
where each datapoint is annotated with a high-precision
microsecond timestamp. The Crazyflie communicates with
a PC over a custom radio (Crazyradio PA) only for high-

https://www.qualisys.com/cameras/miqus/
https://www.bitcraze.io

TABLE II
DATASET SCENARIOS. C.B. STANDS FOR THE CROSSING BEAM

METHOD.

LH Estimation Setting # Datasets
∑

Duration [s]
LH1 C.B. Stationary 5 59
LH1 C.B. Ext. Motion 5 603
LH1 C.B. Flight 5 416
LH1 EKF Stationary 5 59
LH1 EKF Flight 4 436
LH2 C.B. Stationary 5 59
LH2 C.B. Ext. Motion 5 603
LH2 C.B. Flight 4 440
LH2 EKF Stationary 5 59
LH2 EKF Flight 4 437

level commands, such as start/stop of logging, as the radio
bandwidth is insufficient to transfer the data in real-time.

B. Data Collection Preparation

Before conducting experiments, we calibrate the motion
capture system using the vendors calibration kit and software.
We estimate the pose of the two base stations using the
CfClient software, which computes the poses after placing
the Crazyflie at the origin using solvePnP in OpenCV.9

Since this method only relies on four points in one plane,
it is expected to be less accurate than a typical motion
capture calibration that relies on hundreds of points. We do
not attempt to align the coordinate systems, as this would
not be possible with high precision. Instead, we propose to
compute the transformation in postprocessing, as described
in Section IV.

We consider all valid combinations of LH hardware ver-
sion (LH1 and LH2), state estimation method (crossing beam
and EKF), and scenarios (stationary, external motion, flight),
see Table II. For a description of the hardware and state
estimation, see Section II. In the stationary scenario we
place the Crazyflie at different positions and collect data
for 10 consecutive seconds. This is in particular useful to
compute an estimate of the noise of the estimation, e.g., jitter.
In the external motion or movement scenario, we mount
the Crazyflie on a long rod and move it around manually
inside the capture space, similar to how a calibration wand
is moved. Here, higher velocities might be reached and there
is no known dynamics model that can be applied. We use
various different sweeping patterns as well as movement
velocities. For the flight scenario, we fly the Crazyflie
using the LH system as feedback using a sweeping pattern
and randomly sampled position setpoints with two desired
velocities (0.25 m/s and 0.5 m/s). Since the EKF requires
a known dynamics model, the combination of EKF and
external motion is not considered.

We operate the motion capture system at a fixed sample
frequency of 300 Hz. Since we only consider positions and
not orientation for this work, we do not use the rigid body
tracking integrated in the Qualisys software, but instead
compute the mean of the position, pppMC, of the four 3D
markers created by the active marker deck (the geometry

9https://docs.opencv.org/4.5.1/d9/d0c/group calib3d.html

of the deck is such that the mean reflects the geometric
center). If there were not exactly 4 markers detected, we
report NaN. Each datapoint is timestamped with the Qualisys
camera timestamp, tMC, and the resulting time series

DMC = {(tMC
i , pppMC

i) | i = 1, . . .} (10)

is written to a mocap<id>.npy file.
On the Crazyflie, we record the gyroscope and acceleration

at 100 Hz, the raw LH angles and the estimated position (by
either the EKF or crossing beam method) as event streams.
Each datapoint is timestamped with the onboard microsecond
timer and the resulting time series is written to a log<id>
file. For brevity, we only introduce notation for the estimated
position events:

DCF = {(tCF
i , pppCF

i) | i = 1, . . .}. (11)

All files are compact binary representations and we provide
Python scripts to parse and analyze the data.

In order to enable synchronization between the motion
camera clocks and the Crazyflie clock, we record the onboard
microsecond timestamp when the IR LEDs on the active
marker deck are turned on and off, respectively. These two
events are sufficient to synchronize the clocks (offset and
drift).

IV. DATA ANALYSIS

We now discuss how the collected data can be post-
processed for analysis and the performance metrics that we
are considering in this paper.

A. Spatiotemporal Alignment

The dataset contains data from two different clock sources
(motion capture clock and Crazyflie clock) and two different
coordinate systems (motion capture and LH). For any quan-
titative analysis we need to align the data in both space and
time.

For the temporal alignment, let tCF
s and tCF

f be the time of
the Crazyflie clock when the IR LEDs on the active marker
deck were enabled and disabled, respectively. Let tMC

s and
tMC
f be the time of the motion capture clock when 3D markers

were first and last detected, respectively. We can then rescale
the time for each recorded Crazyflie event i to

t̂CF
i = (tCF

i − tCF
s)

tMC
f − tMC

s

tCF
f − tCF

s

. (12)

The compensation for the clock drift is important, as the
Crazyflie does not have a high-precision crystal.

Next, we compute the matching ground truth position, in
the motion capture reference frame, for each Crazyflie event
i using linear interpolation:

p̂ppMC
i = interp(t̂CF

i , {tMC
i − tMC

s | ∀i}, {pppMC
i | ∀i}). (13)

Since the sampling rate of the motion capture is roughly one
order of magnitude higher than the LH events, this is a good
approximation. Note that p̂ppMC

i may be NaN, if there was no
motion capture data available around time t̂CF

i .

https://docs.opencv.org/4.5.1/d9/d0c/group__calib3d.html

We now have a temporally aligned dataset D̃ =
{(t̂CF

i , pppCF
i , p̂ppMC

i) | i = 1, . . .}, where the two positions come
from a different reference frame and the transformation be-
tween the reference frames is unknown. It is easy to estimate
the transformation numerically given this aligned dataset. We
rely on an approach that uses singular value decomposition
(SVD) [14] and that has been shown empirically to produce
high-quality and robust results [15]. The approach requires
as only input D̃ (ignoring the temporal component) and
outputs a rotation matrix R and translation vector ttt, which
transforms points from the LH frame to the motion capture
frame. Finally, we can compute our spatiotemporally aligned
dataset

p̂ppCF
i = RpppCF

i + ttt ∀i
D̂ = {(t̂CF

i , p̂ppCF
i , p̂ppMC

i) | i = 1, . . .}.
(14)

In practice, we found that the motion capture system has
some additional latency of unknown source. To mitigate
this, we consider different offsets tos and tof in the range of
±100 ms and repeat the spatiotemporal alignment procedure
described earlier. We then pick the offsets that minimize the
Euclidean error

∑
i ‖p̂pp

CF
i − p̂pp

MC
i ‖2.

B. Data Filtering

The dataset contains periods of time where either no LH
data was received or the Crazyflie could not be observed
with the motion capture system. The first one largely occurs
during the external motion, since the LH capture space
is smaller than the motion capture space. Other reasons
for missing data include interference between the two base
stations of LH2 that occurs periodically, as well as a partial
occlusion of the LH sensors due to the active marker deck
mounted on top. Missing data from the motion capture
system occurs if not all 4 markers are visible. Thus, we
exclude datapoints where we had no motion capture ground
truth.

For the crossing beam estimation, we exclude datapoints
where we did not receive both light planes from both base
stations on all four sensors (by design of the crossing beam
method). We also exclude datapoints where the crossing
beam δ is greater than 0.1 m. This variable is computed
onboard as the error of the ray intersection approximation.

For the EKF estimation, we exclude datapoints where we
did not receive at least one light plane for at least one LH
sensor from both base stations. We noticed that the filter
tends to drift during these time periods, which skews the
results otherwise and makes them difficult to compare to the
crossing beam method that relies on much more aggressive
data filtering.

C. Performance Metrics

We are interested in quantifying precision and accuracy
of the LH system. For precision, we compute the root mean
square of the position (also often termed as jitter):

P =

√√√√ 1

|D̂|

|D̂|−1∑
i=1

‖p̂ppCF
i − p̂pp

CF
i+1‖22. (15)

TABLE III
PRECISION/JITTER AND SAMPLE FREQUENCY.

LightHouse 1 LightHouse 2 MoCap
C.B. EKF C.B. EKF

Freq. [Hz] 30± 2.4 N.A. 34± 18 N.A. 300± 0.1
Jitter [mm] 0.6 3.9 0.3 0.7 0.1

LH1
C.B.

Ext. Motion

LH1
C.B.

Flight

LH1
EKF

Flight

LH2
C.B.

Ext. Motion

LH2
C.B.

Flight

LH2
EKF

Flight

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

E
uc

lid
ea

n
E

rr
or

[m
]

Fig. 6. Accuracy of Lighthouse 1 and 2 in different scenarios. LH2 achieves
better accuracy compared to LH1 in all cases. The flight scenarios have a
better accuracy due to the lower velocity and focus on the volume with
excellent LH coverage. EKF and crossing beam state estimators achieve a
similar accuracy during our flight tests.

For the accuracy, we consider the Euclidean error for each
datapoint

Ai = ‖p̂ppCF
i − p̂pp

MC
i ‖2, (16)

where interesting statistics include the mean Ā = 1
|D̂|

∑
iAi

and maximum error Amax = maxiAi.

V. RESULTS

We first analyze the precision and sample frequency by
considering the data in the stationary setting, see Table III.

For the crossing beam state estimation, the sample fre-
quency is around 30 Hz, which is sufficient for non-
aggressive flight maneuvers. However, in the LH2 case, this
frequency has a very large standard deviation which is caused
by the periodic interference of the two base stations. An
initial investigation showed that this is mostly caused by
overly conservative filtering of the raw sensor data and can
be improved with a software upgrade in the future. Note that
the provided dataset contains the raw sensor data as well and
could be used to test less conservative filtering techniques.
For the EKF estimation, the sample frequency is arbitrary
and data from LH is considered in the filter as soon as it is
observed.

The precision is significantly lower for LH2 compared to
LH1. Moreover, the precision is worse when using the EKF
compared to the crossing beam state estimation for both LH1
and LH2. This indicates that the jitter induced by the IMU
measurements or by the process noise is higher than the jitter

induced by the LH. Tuning the EKF, for example with the
use of this dataset, might improve the result.

The accuracy in various settings is shown using box and
whisker plots in Fig. 6. The mean and median Euclidean
error is in all cases in the low centimeter (2 cm to 4 cm)
range. There are some outliers, but during flight they are in
the worst case about 5 cm. Larger outliers can be observed
for the external motion case (up to 18 cm) with the crossing
beam state estimator. These are caused by faster motions as
well as operation close to the boundary of the volume that
is observable by the LH base stations. Overall, LH2 has a
higher accuracy compared to LH1 in all scenarios, which
we attribute to the simplified mechanics or improved factory
calibration. The two state estimators, EKF and crossing
beam, have a similar accuracy during our flight tests.

VI. CONCLUSION

We investigate the Lighthouse positioning system for UAV
research in comparison to a traditional motion capture system
by providing a dataset and analysis of accuracy and precision.
We quantify the precision in terms of RMS jitter, which is
in most of our settings in the sub-millimeter range (about
5 times larger than the reference motion capture system).
We quantify the accuracy in terms of Euclidean error, which
is about 1 cm in the average case with outliers up to 5 cm
during flight, and significantly higher outliers when moving
freely. Our results indicate that the LH system is a versatile
alternative to traditional motion capture systems: as feedback
during flight (EKF mode) or as a ground truth (crossing
beam mode) for other, less accurate positioning systems such
as ultra-wideband (UWB) based systems. The Lighthouse
system’s price and fully distributed operation make it in par-
ticular interesting for classroom use and distributed swarm
research.

The dataset also opens up many exciting avenues for
future research. First, it would be interesting to improve
the automatic metric of the crossing beam method to filter
out bad state estimates. We found that the current approach
of using the δ variable does not always correlate with high
errors. Second, the precision measurements showed that LH2
has a high standard deviation for the sample frequency, which
is likely caused by pessimistic filtering of the raw data. Third,
the high precision might indicate that a higher accuracy is
possible as well, if better calibration methods are developed.
We believe that our dataset can be used for all of these

directions as well as for tuning the EKF, as it contains the
relevant raw data.

REFERENCES

[1] J. A. Preiss, W. Hönig, G. S. Sukhatme, and N. Ayanian,
“Crazyswarm: A large nano-quadcopter swarm”, in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2017,
pp. 3299–3304.

[2] M. Hoppe, M. Burger, A. Schmidt, and T. Kosch, “DronOS: A
flexible open-source prototyping framework for interactive drone
routines”, in International Conference on Mobile and Ubiquitous
Multimedia (MUM), ACM, 2019, 15:1–15:7.

[3] M. Greiff, A. Robertsson, and K. Berntorp, “Performance bounds in
positioning with the vive lighthouse system”, in IEEE International
Conference on Information Fusion (FUSION), 2019, pp. 1–8.

[4] K. Sletten, “Automated testing of industrial robots using HTC vive
for motion tracking”, M.S. thesis, University of Stavanger, Norway,
2017.

[5] D. C. Niehorster, L. Li, and M. Lappe, “The accuracy and precision
of position and orientation tracking in the HTC vive virtual reality
system for scientific research”, i-Perception, vol. 8, no. 3, 2017.

[6] M. S. Ikbal, V. Ramadoss, and M. Zoppi, “Dynamic pose tracking
performance evaluation of HTC vive virtual reality system”, IEEE
Access, vol. 9, pp. 3798–3815, 2021.

[7] R. Wu, J. Pandurangaiah, G. M. Blankenship, et al., “Evaluation
of virtual reality tracking performance for indoor navigation”, in
IEEE/ION Position, Location and Navigation Symposium (PLANS),
2020, pp. 1311–1316.

[8] J. Lwowski, A. Majumdat, P. Benavidez, J. J. Prevost, and M.
Jamshidi, “HTC vive tracker: Accuracy for indoor localization”, IEEE
Systems, Man, and Cybernetics Magazine, vol. 6, no. 4, pp. 15–22,
2020.

[9] E. Luckett, “A quantitative evaluation of the HTC vive for virtual
reality research”, Bachelor’s Thesis, The University of Mississippi,
2018.

[10] S. M. van der Veen, M. Bordeleau, P. E. Pidcoe, C. R. France, and
J. S. Thomas, “Agreement analysis between vive and vicon systems to
monitor lumbar postural changes”, Sensors, vol. 19, no. 17, p. 3632,
2019.

[11] C. Honnet and G. Lopes, “Hivetracker: 3d positioning for ubiquitous
embedded systems”, in ACM International Joint Conference on
Pervasive and Ubiquitous Computing and International Symposium
on Wearable Computers (UbiComp/ISWC), R. Harle, K. Farrahi, and
N. D. Lane, Eds., 2019, pp. 288–291.

[12] M. Borges, A. Symington, B. Coltin, T. Smith, and R. Ventura,
“HTC vive: Analysis and accuracy improvement”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 2610–2615.

[13] M. W. Mueller, M. Hehn, and R. D’Andrea, “Covariance correction
step for kalman filtering with an attitude”, Journal of Guidance,
Control, and Dynamics, pp. 1–7, 2016.

[14] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of
two 3-d point sets”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 9,
no. 5, pp. 698–700, 1987.

[15] D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-d rigid
body transformations: A comparison of four major algorithms”,
Mach. Vis. Appl., vol. 9, no. 5/6, pp. 272–290, 1997.

https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1145/3365610.3365642
https://doi.org/10.1145/3365610.3365642
https://doi.org/10.1145/3365610.3365642
https://ieeexplore.ieee.org/document/9011242
https://ieeexplore.ieee.org/document/9011242
http://hdl.handle.net/11250/2455902
http://hdl.handle.net/11250/2455902
http://dx.doi.org/10.1177/2041669517708205
http://dx.doi.org/10.1177/2041669517708205
http://dx.doi.org/10.1177/2041669517708205
https://doi.org/10.1109/ACCESS.2020.3047698
https://doi.org/10.1109/ACCESS.2020.3047698
https://doi.org/10.1109/PLANS46316.2020.9110225
https://doi.org/10.1109/PLANS46316.2020.9110225
http://dx.doi.org/10.1109/MSMC.2020.2969031
http://thesis.honors.olemiss.edu/1122/7/Luckett%20Thesis.pdf
http://thesis.honors.olemiss.edu/1122/7/Luckett%20Thesis.pdf
https://doi.org/10.3390/s19173632
https://doi.org/10.3390/s19173632
https://doi.org/10.1145/3341162.3349295
https://doi.org/10.1145/3341162.3349295
https://doi.org/10.1109/IROS.2018.8593707
http://dx.doi.org/https://doi.org/10.2514/1.G000848
http://dx.doi.org/https://doi.org/10.2514/1.G000848
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1007/s001380050048
https://doi.org/10.1007/s001380050048

	Introduction
	Lighthouse positioning system
	Hardware
	Crossing Beam Method
	EKF Lighthouse Measurement model

	Data Collection Setup
	Flight Area and Hardware Setup
	Data Collection Preparation

	Data Analysis
	Spatiotemporal Alignment
	Data Filtering
	Performance Metrics

	Results
	Conclusion

