
RLSS: Real-time Multi-Robot Trajectory Replanning using Linear Spatial Separations
Baskın Şenbaşlar[1], Wolfgang Hönig[1,2], Nora Ayanian[1]

[1] University of Southern California, [2] California Institute of Technology

lab

Introduction

Approach

Evaluation

Goal Selection

Discrete Search

Trajectory Optimization

Validity Check

Desired Trajectories Executed Trajectories

RLSS computes trajectories in real-time. It
 1. explicitly considers dynamic limits of robots,
 2. does not rely on a central computer,
 3. handles agent failures and compansates poorly performing controllers,
 4. does not rely on communication for safety,
 5. requires perfect sensing of positions of other robots and obstacles,
 6. avoids deadlocks (only experimentally),
 7. enforce safety using hard constraints abd reports back if it can't ensure safety,
 8. and works in the presence of obstacles.

RLSS pipeline runs in every time step. We use periods between 100ms and 500ms in our experiments.

Abstract: Trajectory replanning is a critical problem for multi-robot teams navigating dynamic environments. We present RLSS (Replanning using Linear Spatial Separations): a real-time trajectory replanning algorithm for
cooperative multi-robot teams that uses linear spatial separations to enforce safety. Our algorithm handles the dynamic limits of the robots explicitly, is completely distributed, and is robust to environment changes, robot
failures, and trajectory tracking errors. It requires no communication between robots and relies instead on local relative measurements only. We demonstrate that the algorithm works in real-time both in simulations and in
experiments using physical robots. We compare our algorithm to a state-of-the-art online trajectory generation algorithm based on model predictive control, and show that our algorithm results in significantly fewer
collisions in highly constrained environments, and effectively avoids deadlocks. Full paper is available on arXiv: https://arxiv.org/abs/2103.07588

Select a goal on the desired trajectory to plan towards: Given a desired
planning horizon, compute the actual planning horizon such that the desired
trajectory is collision-free at the actual time horizon.

Plan a discrete path to the selected goal position: We use A* search to
compute a discrete path from the current position to the goal position. In A*
search, forward moves and rotations have costs of 1. There are also actions to
enter the grid and leave the grid. The desired number of segments is given as a
hyperparameter and the segments are split if there are fewer segments than
desired. (Segments with blue end points in the image are computed by A*
search. Since the desired number of segments is 6, red end points are
introduced by segment splitting.) If there are more segments than desired,
segments from the end are omitted. We also compute segment durations in
discrete search.

Compute a smooth trajectory over discrete segments: We fit a piecewise Bezier curve on discrete
segments using one piece per segment.

 Enforcing Robot-to-Robot Collision Avoidance: To enforce robot to robot collision avoidance we
compute SVM hyperplanes among robot collision shapes. We constrain the first piece to stay inside the
SVM half-space. We enforce that the duration of the first piece is more than the planning period.
 Enforcing Robot-to-Obstacle Collision Avoidance: We compute the SVM hyperplanes between each
discrete segment and obstacle. We constrain trajectory pieces to stay in the computed SVM half-spaces.
We also add constraints for continuity between trajectory pieces and between planning iterations.

The cost function of the optimization problem is a combination of energy usage and deviation from
discrete segments.

Check if the resulting trajectory is valid: We impose derivative magnitude limits on the trajectory in the validity check. If the
magnitude of any derivative of any desired degree is more than the maximum amount, the trajectory is invalid. To compute the
maximum derivative magnitude along the trajectory, we execute linear search with small increments over the duration of the
trajectory. If the resulting trajectory is invalid, we increase the piece durations and re-run the optimization.

https://youtu.be/xsnWs-85knA

[DMPC] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectorygeneration with distributed model predictive
control for multi-robot motion planning,”IEEE Robotics and Automation Letters, vol. 5, no. 2,pp. 604–611, 2020.

https://arxiv.org/abs/2103.07588
https://arxiv.org/abs/2103.07588

