
Robust Trajectory Execution for Multi-Robot Teams Using Distributed
Real-time Replanning

Baskın Şenbaşlar Wolfgang Hönig Nora Ayanian

I. INTRODUCTION

Motion planning for multi-robot systems is particularly
important in cases where many robots must interact with each
other in confined spaces, potentially with many obstacles.
Modern planning algorithms can find trajectories that ef-
fectively coordinate hundreds of robots while approximately
optimizing objectives such as total energy used [2]; however,
all such solutions assume that the resulting trajectories can be
executed nearly perfectly, which is an unrealistic assumption.

To compensate for the changes in the environment or
imperfect execution, one might apply cooperative collision
avoidance strategies, such as ORCA [3], at runtime. How-
ever, such algorithms often operate locally and do not take
the pre-planned trajectories or dynamic limits of the robots
into account.

We propose an algorithm for robust trajectory execution
that compensates for a variety of dynamic changes, including
newly appearing obstacles, robots breaking down, imperfect
motion execution, and external disturbances. Consider the
example in Fig. 1(a), where two robots must swap positions.
The pre-planned trajectories are collision-free, but they do
not consider the newly introduced obstacle and the blue
robot does not start at its correct location. However, the pre-
planned trajectories can be used as guidance for replanning.
In this example, robots can get stuck if a local cooperative
collision avoidance strategy is applied. Using our method, the
robots can successfully swap positions, while staying as close
as possible to the pre-planned trajectories, as in Fig. 1(b). Our
method is fully distributed and requires no communication.
The robots only need to know their own trajectories and be
able to sense other robots’ positions and the obstacles around
them.

II. PROBLEM FORMULATION

Consider a group of m robots. Each robot i is given the
following:

oi(t) : original trajectory of ith robot where t ∈ [0, Ti],

c : order of derivative up to which
smoothness is required,

This paper is an extended abstract of work accepted at DARS 2018 [1].
This research was supported in part by Office of Naval Research grant
N00014-14-1-073 and National Science Foundation grant 1724399. B.
Şenbaşlar gratefully acknowledges the support from the Fulbright pro-
gram sponsored by U.S. Department of State. All authors are with
the Department of Computer Science, University of Southern California,
Los Angeles, CA, USA. Email: {baskin.senbaslar, whoenig,
ayanian}@usc.edu

(a) (b)

Fig. 1. (a) Two robots (green and blue circles) are tasked with following
their pre-planned trajectories (green and blue dashed lines). The initial plans
were created without the knowledge of the obstacle (gray) and the blue robot
does not start at its planned initial position. (b) Our approach computes
smooth trajectories in real-time, avoiding both the new obstacle and other
robots while staying close to the pre-planned trajectory.

R(p) : convex collision shape of any robot at position p,

γk : dynamic limit of the robot for the

kth derivative of its trajectory.

Each robot i can sense the positions {p1, . . . ,pm} of
the other robots as well as the current occupied space Oi

around it. Robots are unaware of the other robots’ planned
trajectories, and cannot communicate with each other. Each
robot i must execute a trajectory fi(t), where fi(t) is a
solution to the following optimization problem:

minimize
∫ Ti

0

‖fi(t)− oi(t)‖2 dt (1)

subject to
fi(t) is continuous up to degree c,
djfi
dtj

(0) =
djpi

dtj
(0) for j ∈ {0, 1, ..., c}

fi(t) is collision-free, and∥∥∥∥dkfi(t)dtk

∥∥∥∥ ≤ γk for all desired k,

where t ∈ [0, Ti].

III. APPROACH

We solve this problem approximately, using a dynamic
receding horizon approach iteratively. At every iteration K,
robot i plans a trajectory fKi (t) that starts at the robots’
current position and is safe to execute up to the user-provided
period δt.

Replanning is done at a fixed period of δt. In each iteration
K, we sense the other robots’ positions to compute the
buffered Voronoi cell Vi [4], update our current represen-
tation of the occupied space (Oi) and compute support
vector machine hyperspaces to define safe space according
to obstacles, and compute a trajectory fKi (t).



(a) (b)

Fig. 2. The original trajectories and the occupancy grids in some of our
simulation setups.

We execute the following three major components iter-
atively: discrete planning that is used to efficiently plan
around new obstacles and robots, trajectory optimization
that is formulated as a convex QP to generate smooth and
collision-free trajectories, and temporal rescaling to enforce
the dynamic limits of the robot.

Given a user defined time horizon τ , we execute discrete
planning if i) the original trajectory is not collision free for
the time horizon τ , or ii) the previously planned trajectory
is outside of the robot’s buffered Voronoi cell for the period
δt, or iii) the previously planned trajectory is not collision
free for the time horizon τ . The first condition handles cases
where previously unknown obstacles block the pre-planned
trajectory of a robot. The second condition handles cases
where previously unknown robots appear and cases where
robots are close and moving towards each other. The third
condition handles dynamic obstacles.

The discrete planning component is used to give a good
initial guess for trajectory optimization. If it is not used, the
previous plan is used as the initial guess. During trajectory
optimization, we plan for a piecewise Bézier curve such
that the curve is inside the robot’s buffered Voronoi cell for
up to time δt, is inside the safe-space defined by support
vector machine hyperspaces calculated between obstacles
and trajectory pieces, continuous up to a user defined degree
of derivative, and minimizes a cost function that balances
energy usage and deviation from the original trajectory.
When each robot obeys to the rule that the trajectory stays
inside the robot’s buffered Voronoi cell up to time δt, no
robot to robot collision can occur for that period. This is the
cooperative aspect of our approach.

During temporal rescaling, we check if the trajectory
violates the dynamic limits of the robot, and if it does,
we increase the duration of the curve, and re-run trajectory
optimization.

At the end of each iteration, each robot has its trajectory
fKi (t) that is guaranteed to be collision-free up to time δt;
is continuous up to user defined cth derivative; obeys the
dynamic limits of the robot; tries to stay close to the original
trajectory; and is a good starting point for the next iteration.

IV. EVALUATION

First, we analyze our approach in simulation using dif-
ferential drive robots in environments that contain unknown

TABLE I
COMPARISON OF OUR METHOD, ORCA, AND DS+ORCA WITH

RESPECT TO AVERAGE COMPUTATION TIME (tAVG ), AND THE NUMBER
OF ROBOTS THAT REACH THEIR DESTINATIONS (s). m DENOTES THE

NUMBER OF ROBOTS, AND θ DENOTES THE NUMBER OF OCCUPIED
CELLS IN THE ENVIRONMENT.

ORCA DS+ORCA Our Method
m θ tavg [ms] s tavg [ms] s tavg [ms] s
2 4 < 1 0 < 1 2 7 2
4 12 < 1 0 < 1 4 10 4
8 30 < 1 4 < 1 8 13 8
16 9 < 1 13 < 1 16 12 16
32 30 < 1 23 < 1 32 16 32

obstacles. Some of our simulation setups are given in Fig. 2.
We run our simulations on a laptop computer (i7-4700MQ
2.4GHz, 16GB) with Ubuntu 16.04 as operating system.
Assuming 10Hz as replanning frequency, the results of our
scalability tests suggest that our algorithm: i) runs in realtime
when using up to 12 trajectory pieces (we found that 4 pieces
are sufficient in all our test cases), ii) is not significantly
affected by the number of robots, and iii) can handle several
hundreds of occupied cells. We also compare our method
with two variants of ORCA. In the first variant, we use
ORCA as is. In the second variant, which is denoted as
DS+ORCA, we combine ORCA with our discrete search
method. As Table I suggests, all robots using our method or
DS+ORCA reach their destinations. Our method takes more
time in computation compared to both ORCA variants, but
produces continuous curves up to a user defined derivative
degree while ORCA and DS+ORCA are continuous only in
position.

Second, we implement our approach on six differential
drive robots (iRobot Create2) that are equipped with one of
ODROID C1+ or ODROID XU4 single-board computers.
We conduct several experiments and add an additional ob-
stacle, change the robots’ initial positions, disturb the robots
during run-time, or artificially stop one of the robots. In
all cases robots successfully avoid collisions and in many
cases they reach their final destination within the originally
planned durations. The setup for physical experiments can
be found in our supplemental video at https://youtu.

be/LbWRvLfdwTA.
An implementation of our algorithm is available

online at http://github.com/baskinburak/

mrtrajreplan-dars2018. Currently, we are working on
implementing our approach for UAVs in 3D environments.

REFERENCES

[1] B. Şenbaşlar, W. Hönig, and N. Ayanian, “Robust trajectory execution
for multi-robot teams using distributed real-time replanning,” in Dis-
tributed Autonomous Robotic Systems. Springer, 2019, pp. 167–181.

[2] W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE T-RO, Special Issue
on Aerial Swarm Robotics, 2018.

[3] J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in ISRR, 2009, pp. 3–19.

[4] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-line
collision avoidance for dynamic vehicles using buffered voronoi cells,”
IEEE RA-L, vol. 2, no. 2, pp. 1047–1054, 2017.

https://youtu.be/LbWRvLfdwTA
https://youtu.be/LbWRvLfdwTA
http://github.com/baskinburak/mrtrajreplan-dars2018
http://github.com/baskinburak/mrtrajreplan-dars2018

	INTRODUCTION
	PROBLEM FORMULATION
	APPROACH
	EVALUATION
	References

