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Abstract— We use reinforcement learning to train policies in
simulation that transfer remarkably well to multiple different
physical quadrotors. Our policies are low-level, i.e., we map the
rotorcrafts’ state directly to the motor outputs. We show how
different training methodologies (change of the cost function,
modeling of noise, use of domain randomization) might affect
flight performance. To the best of our knowledge, this is the first
work that demonstrates that a simple neural network can learn
a low-level quadrotor controller without the use of a stabilizing
PD controller; as well as the first work that analyses the transfer
capability of a single policy to multiple quadrotors. The video of
our experiments can be found at https://sites.google.
com/view/sim-to-multi-quad.

I. INTRODUCTION AND RELATED WORK

Traditional methods to quadrotor stabilizing control often
require careful, model-specific system identification and pa-
rameter tuning to succeed. We are interested in finding a
single control policy without manual parameter tuning. Such
a control policy is useful for testing of new custom-built
quadrotors, and as a backup safety controller. In our work,
we use reinforcement learning (RL) with simulated quadrotor
models to learn a transferable control policy.

Transferring from simulation to reality (S2R) is often
used to overcome the issues of safety, and complexity of
data collection on robotic systems. Carefully estimating
parameters of the real system to achieve a more realistic
simulation can improve the transfer quality [1]–[4] but often
requires complex setups [4]. An alternative way to close the
S2R gap is by iterative data collection [5]–[8]. The common
problem of these approaches is the necessity to execute
untrained policies directly on the robot, which may raise
safety concerns.

Domain randomization (DR) [9] is a simple albeit promis-
ing domain adaptation technique that is well suited for S2R.
It compensates for the discrepancy between different do-
mains by extensively randomizing parameters of the training
domain in simulation. DR has been successfully applied for
transferring visual features [9] and high level policies [10].

The approach most related to ours is the work of Hwangbo
et al. [11]. The authors demonstrate transferring of a low-
level stabilizing policy for the Hummingbird quadrotor that
is trained in simulation. In contrast to their work i) we
assume minimal prior knowledge about quadrotor’s dynam-
ics parameters, ii) we transfer a single policy to multiple
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Fig. 1. Three quadrotors of different sizes controlled by the same policy
trained entirely in simulation.

quadrotor platforms, iii) we do not use auxiliary pre-tuned
PD controller in the learned policy, iv) we simplify the cost
function used for training the policy, v) we investigate the
importance of different model parameters and the role of DR
for S2R transfer of quadrotor’s low-level policies.

II. PROBLEM STATEMENT

The quadrotor state is described by the tuple
(ep, ev, R, eω), where ep ∈ R3 is the position error,
ev ∈ R3 is the linear velocity error in the world frame,
R ∈ SO(3) is the rotation matrix from the quadrotor’s
body coordinate frame to the world frame, and eω is the
angular velocity error in the body frame. The objective is to
minimize the norms of ep, ev, eω and drive the last column
of R to [0, 0, 1]T in the shortest time. The policy should
be capable of recovering from different initial conditions,
as well as transferable to other quadrotor platforms while
retaining high performance.

III. DYNAMICS SIMULATION & LEARNING

We simulate the dynamics using Newton-Euler equations.
We simulate sensor noise, and non-ideal motors with motor
lag and motor noise to increase realism. Motor lag is sim-
ulated by a discrete-time first-order low-pass filter. Motor
noise is added following a discretized Ornstein-Uhlenbeck
process.

We use a fully-connected neural network to represent
a policy. The network input is an 18-dimensional vector
representing the quadrotor state presented in Section II. This
state representation enables trajectory tracking by shifting
the goal state. The output of the network is the normalized
commands a for individual rotors. The policy is trained using
the Proximal Policy Optimization (PPO) algorithm [12].
During training, we sample the initial states uniformly. The
goal state is always selected to hover at [0, 0, 2]T in the world
coordinates. The cost function is defined as

ct = (‖ep‖2 + αv ‖ev‖2 + αω ‖eω‖2 + αa ‖a‖2
+ αR cos−1 ((Tr(R)− 1)/2))dt,

(1)
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TABLE I
ROBOT PROPERTIES.

Robot CF Small Medium
Weight [g] 33 73 124
lbody,w [mm] 65 85 90
rt2w (approximate) 1.9 2.0 2.7

where αω, αa, αR, αv are non-negative scalar weights. The
term cos−1 ((Tr(R)− 1)/2) represents the angle of rotation
between the current orientation and the identity rotation
matrix.

We investigate the role of DR for generalization toward
models with unknown dynamics parameters. During train-
ing, we sample dynamics parameters for each individual
trajectory. We experiment with two approaches for dynamics
sampling (parameter randomization):
1) Randomization around a set of nominal values.
2) Randomization within a set of limits (full randomization).

IV. EXPERIMENTS

We analyze the influence of the different terms in the cost
function (1) on the flight performance of the Crazyflie 2.0
platform. We measure the performance in terms of mean
position error eh, mean angular error ēθ, and oscillation
frequency fo. We show that we can train a successful policy
with a cost that only penalizes position, angular velocity, and
actions. The major advantage of adding the cost on rotational
errors is yaw stabilization, which might be desired for takeoff
or if the quadrotor is carrying a camera.

We test the influence of noise and motor lag (settling time)
in a trajectory tracking task on the Crazyflie 2.0. The task in-
cludes flying a figure-eight at moderate speeds (up to 1.6 m/s,
5.4 m/s2, 24 deg roll angle; 5.5 s long), and landing. As a
baseline, we use the non-linear controller (“Mellinger”) that
is part of the Crazyswarm [13] with default gains and zero
integral terms. Our neural network with the motor settling
time T = 0.15 has a mean position error of 0.19 m, which is
similar to the Mellinger controller (0.2 m). A network trained
without motor lags (T nearly zero) overshoots frequently and
has a larger mean position error of 0.21 m. If the network is
trained without sensor and motor noise, we measure a mean
position error of 0.24 m. Note that none of our policies are
explicitly trained for trajectory tracking. Nonetheless, they
still show competitive tracking performance compared to the
baseline trajectory-tracking controller specifically tuned for
the Crazyflie.

We investigate how well a single policy works across
three different quadrotors with varying physical properties:
Crazyflie 2.0, small, and medium size as described in Table I
and shown in Fig. 1. We found that our policies showed
comparable performance to the Mellinger controllers on all
platforms, and full randomization shows more consistent
results over all platforms, but for specific platforms may
perform worse than other policies.

We perform recovery robustness tests by making repetitive
throws of the quadrotors in the air. Our policies perform
especially well on the Crazyflie platform recovering from
80% of all throws and up to 100% throws with moderate
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Fig. 2. An example of a recovery trajectory from a random throw with an
initial linear velocity of approximately 4 m/s.

attitude changes (≤ 35◦)1. The policy also shows substantial
level of robustness on other quadrotors. Another surprising
observation is that the control policies can deal with much
higher initial velocities than those encountered in training (≤
1 m/s). Fig. 2 shows an example of a recovery trajectory.

V. FUTURE WORK

Our findings open exciting directions for future work. We
are planning to explore how we can incorporate a limited
number of samples collected from real systems with our
policies to improve the trajectory tracking performance of
our policy without manual tuning. We are also planning to
investigate if different network structures are able to transfer
better to multiple platforms. Finally, we want to explore if
we can increase robustness of the policies by training with
different failure cases such as broken motors.
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1Computed as a 95-th percentile in our experiments.
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