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Persistent and Robust Execution of MAPF
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Abstract—Multi-Agent Path Finding (MAPF) is a well-studied
problem in Artificial Intelligence that can be solved quickly
in practice when using simplified agent assumptions. However,
real-world applications, such as warehouse automation, require
physical robots to function over long time horizons without
collisions. We present an execution framework that can use exist-
ing single-shot MAPF planners and ensures robust execution in
the presence of unknown or time-varying higher-order dynamic
limits, unforeseen robot slow-downs, and unpredictable obstacle
appearances. Our framework also naturally enables the overlap
of re-planning and execution for persistent operation and requires
little communication between robots and the centralized planner.
We demonstrate our approach in warehouse simulations and in
a mixed reality experiment using differential drive robots. We
believe that our solution closes the gap between recent research in
the artificial intelligence community and real-world applications.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents; Planning, Scheduling and Coordination; Multi-Robot
Systems; Collision Avoidance; Factory Automation

I. INTRODUCTION

THE Multi-Agent Path Finding (MAPF) problem is a
well-studied problem in Artificial Intelligence, where

collision-free paths for many agents need to be computed given
the current state of the agents as well as a representation
of the environment. Practical applications include computer
games, traffic management, airport scheduling, and warehouse
automation [1]. Current state of the art algorithms can compute
bounded suboptimal solutions for hundreds of robots within
minutes. However, executing such plans on physical robot
teams remains challenging, because most efficient MAPF
formulations make unrealistic simplifying assumptions. In this
section, we will discuss these shortcomings as they pertain to
a challenging industrial warehouse planning problem [2].

Consider the example domain in Fig. 1, where robots
are tasked with delivering shelves to pack stations. At each
station, a human worker picks one or more items from each
delivered shelf. Upon completion, the robot then returns the
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Fig. 1. An example of the warehouse domain with 32 shelves, 12 robots, and
two stations (transparent squares on the right). A task requires any robot to
pick up a particular shelf, bring it to a specified station, and return the shelf
to another location. The objective is to keep the stations utilized with as few
robots as possible.

shelf to a storage location in the warehouse. Most MAPF
formulations make two significant assumptions that cannot be
ignored on real robots. First, they assume that robots can act
synchronously, executing exactly one action per timestep. In
practice, warehouse robots are subject to at least second-order
dynamic constraints; for example, moving 3m forward con-
tinuously without stopping will be faster than stopping each
meter of movement (a typical action in MAPF planners) due
to finite acceleration constraints. Additionally, exact execution
times may vary due to unforeseen necessary slow-downs or
control inaccuracies. Second, MAPF formulations assume that
the planning problem is single-shot, i.e., robots move from
their current position to a goal and remain there. In real
world applications, the planning problem is likely persistent
and evolving (also sometimes referred to as life-long [3]).
For example, robots have to move shelves continuously in the
warehouse scenario, because new orders arrive regularly.

Our approach addresses these shortcomings by introducing
an execution framework that is agnostic of the underlying
MAPF solver. We first introduce the Action Dependency
Graph (ADG). The ADG is a graph that captures the action-
precedence relationships of a MAPF solution and can be used
to enforce these relationships on real robots with higher-order
dynamics. Second, we show that this data structure enables
efficient and persistent performance where (re-)planning and
execution occur simultaneously, avoiding robot idle time dur-
ing planning. We demonstrate our approach in simulation and
in a mixed reality experiment with physical differential drive
robots.

II. RELATED WORK

Multi-Agent Path Finding (MAPF) is an NP-hard [4] prob-
lem that is frequently formulated as follows. Given an un-
weighted undirected graph of the environment and a set of
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agents with start and goal locations, determine a collision-
free path for each agent. Agents initially reside at their start
location and must eventually reach their goal location. At
each timestep, an agent may either wait at its current vertex
or traverse an edge. Existing solvers are search-based [5],
reduction-based [1], [6], or rule-based [7], [8].

Some work introduces more realism to the common MAPF
formulation. Execution robustness can be improved by avoid-
ing k−delay conflicts, which guarantees collision-free oper-
ation if robots are delayed up to k timesteps [9]. Another
formulation considers delay probabilities [10], where robots
might stay at their current location with a given probability
when tasked with a move action. In both cases, robustness
is increased, but, unlike our work, newly appearing obstacles
are not considered. More realistic robot collision models can
be considered when using MAPF with generalized conflicts
(MAPF/C), which allows planning on roadmaps rather than
grids [11]. Another generalization introduces edge weights and
capacity limits [12]. In both cases, the generalization enables
a wider range of robot and environment types, but does not
improve persistence or robustness.

A post-processing step called MAPF-POST can be used to
execute MAPF schedules on robots with varying velocity con-
straints [13]. MAPF-POST leverages that precedence relations
of a schedule can be extracted in polynomial time. A simple
temporal network is constructed based on the precedence
relation and is updated continuously in an attempt to avoid
re-planning. Our approach is based on the same key insight,
but we use the precedence relation on actions rather than states.
Our approach is more robust than MAPF-POST, because it re-
quires less communication (robots only need to communicate
when an action is finished instead of broadcasting their po-
sition continuously) and has stronger guarantees on collision-
free operation (robots can have arbitrary dynamic limits). We
also demonstrate persistence, which was not demonstrated
with MAPF-POST.

RMTRACK uses a similar idea for robustness, but does
so as control law, rather than a post-processing step [14].
Robust plan-execution policies use the key idea of MAPF-
POST at runtime, similar to our work, by sending messages
whenever an agent enters a new state (Fully Synchronized
Policy), or only for some important state changes (Minimal
Communication Policy) [10]. Unlike our work, RMTRACK
and robust plan-execution policies only consider delaying
disturbances, while our approach addresses persistence and
newly appearing obstacles as well.

MAPF formulations can be used for persistent planning
of delivery tasks [3]. However, that work assumes perfect
execution. In contrast, our work focuses on robust execution
on real robots and allows us to efficiently and safely overlap
planning and execution.

One of the key ideas of our approach, using the partial
order of a schedule to deal with robustness, has been applied
in operations research before [15]. We extend this approach
to work in multi-robot settings, provide persistence, and show
how to construct such a partial order schedule in polynomial
time from an existing MAPF schedule.

Robust execution is related to cooperative obstacle avoid-

ance, but the objective is to stay as close as possible to the
pre-planned schedule. In contrast, existing obstacle avoidance
techniques such as reciprocal velocity obstacles [16], buffered
Voronoi cells [17], and safety barrier certificates [18] do not
consider the complete pre-planned schedule. By staying close
to the pre-planned schedule, robust execution reduces the
risk that a collision occurs in the future. Robust trajectory
execution [19] considers pre-planned trajectories, but requires
significantly more computation than our approach.

III. PROBLEM DESCRIPTION

We now formulate our persistent warehouse problem. Con-
sider the map of a warehouse as a four-connected grid. Each
cell in the map can either contain an obstacle, contain a station,
be free space, or be a shelf-storage location. Shelf-storage cells
may or may not contain a shelf at any given time, but they
may not be traversed other than to attach or detach a shelf.
There are P shelves with known locations either in one of
the shelf-storage cells in the map or on top of a robot. There
are R robots with known locations and orientations, as well
as S stations at fixed known locations. A task requires a shelf
to be carried to a particular station, yield there for a given
estimated time, then return to a given shelf-storage location.
We assume that the map fulfills the well-known infrastructure
requirement [20] when considering potential shelf locations
as only valid start and stop locations. This requirement en-
sures that robots are never obstructed from moving, even if
other robots are stationary at potential shelf locations. This
assumption allows our approach to provide completeness and
liveness guarantees even in a persistent setting. We focus on
a two-tiered objective function. The primary objective is to
maximize the utilization of all stations (i.e., minimizing the
human worker idle time), and the secondary objective is to
minimize the number of required robots.

A. Robot Model

The proposed execution framework does not rely on a
specific robot movement model, however, differential drive
robots are used in our experiments. We assume each robot
is circular with diameter dr and each grid cell is large enough
to contain at least one robot. Each robot can turn-in-place by
90 degrees, move forward to the next cell, attach to a shelf,
detach from a shelf, and yield at a station. We denote the set
of actions as A = {�,	, ↑,Attach,Detach,Yield}. Each
robot is able to localize itself in the warehouse and execute
its actions autonomously using an on-board controller. While
a time estimate for each action is known, the actual execution
might differ. However, we assume that a robot will not diverge
significantly from its path spatially and that it will eventually
finish its action. Furthermore, a robot can signal, in a timely
manner, when it has finished an action. A robot’s ability to
accelerate can be significantly dampened by carrying the heavy
load of a shelf. To address this, each robot has a command
queue and can combine sequential actions in its queue. For
example, if three “move forward” actions are in a robot’s
command queue, the robot can accelerate, move three units,
and decelerate in a smooth continuous motion. This results
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in faster and smoother execution compared to one where the
robot must accelerate and decelerate for each move action.
Feedback signals for each individual edge traversed are still
reported.

B. Warehouse Planning Problem

We are given the map of the warehouse as an undirected
graph GE = (VE , EE), where vertices correspond to locations
arranged in a grid and edges correspond to straight lines
between locations that can be traversed by the robot without
colliding with a static obstacle. A subset of the vertices VP̂ =

{vp1 , . . . , vpP̂ } ⊂ VE is the set of P̂ possible shelf storage
locations, arranged such that the well-known infrastructure
property is fulfilled if considering those locations as the only
endpoints. A different subset {vs1 , . . . , vsS} ⊂ VE describes
the location of the S stations. There are R ≤ P̂ robots, each
of which is initially located at a vertex in VP̂ . Furthermore,
there are P ≤ P̂ shelves, each of which is initially located at
a vertex in VP̂ (where it is possible that shelves and robots
are co-located). Shelves are assumed to be square with a side
length of dp.

A task T q ∈ T is a tuple (shelfi, stationk, δ, vpj ), de-
scribing that shelf i must be picked up by a single robot
from its current location, delivered to station k where it will
approximately yield for δ seconds (during which a human can
pick items from the shelf), and returned to a possibly different
location vpj . When initially issued, a task is not bound to a
robot and thus robots can freely be assigned to any task. New
tasks may be added to T at any time.

Time is continuous and flows forward unabated; at each
instant a robot can either wait at its current vertex or begin
executing one of its actions. Let loc(ri, t) ∈ R2 be the
location of robot ri at time t and loc(shelfi, t) ∈ R2 the
location of shelfi at time t. Note that shelves are either at
a shelf storage location or on top of a robot. A robot can
drive under a shelf if it is currently not carrying another
shelf. To avoid collisions, we must ensure that: i) robots
never collide with each other, i.e., ‖ loc(ri, t)− loc(rj , t)‖2 >
dr, i 6= j,∀t; and ii) shelves never collide with each other, i.e.,
‖ loc(shelfi, t) − loc(shelfj , t)‖∞ > dp, i 6= j,∀t. Even if i)
is enforced, ii) can occur if a robot attempts to drive over a
shelf location when it still has a shelf attached.

Whenever a robot fulfills a task that brings a shelf to a
station and yields, the station is considered utilized during the
yield’s duration. We denote the total utilization duration of
station k from time 0 to time t as dur(k, t). Our goal is to
maximize the average station utilization over the time interval
[0, t], i.e., maxu(t) = 1

tS

∑S
k=1 dur(k, t). Typically, we are

interested in maximizing u(t) over a long time horizon, e.g.,
a work shift.

C. Persistent and Robust Execution

We consider an execution persistent if robots continue to
fulfill tasks and avoid unnecessary wait times. Unnecessary
wait times occur if robots cannot execute any action because
they are waiting for the planner to finish; a formal definition
is given in Section V-A.

We consider an execution robust if no collision occurs
even in the event of varying execution times of robot actions.
Such time variations may arise due to varying dynamic limits,
temporary robot malfunction, or unforeseen obstacles (e.g.,
items that fell from a shelf and are now blocking the robot’s
path).

IV. APPROACH

First, we simplify the planning stage to operate in discrete
time and ignore higher-order dynamics, which allows us to
use existing single-shot MAPF planners. Second, we leverage
an action dependency graph (ADG) for robust continuous-
time execution. Third, we demonstrate how the ADG can be
used for persistent execution by overlapping execution and
planning.

A. Single-Shot MAPF Formulation

We define the state s of a robot to be a tuple
s = (location, heading, task, stage), where location ∈
VE is the current location of the robot, heading ∈
{South,North,East,West} is its current heading, task ∈
{None} ∪ T the currently assigned task, and stage ∈
{Idle,ShelfAttached,Yielded} keeps track of the task
progress. The possible state transitions can now be defined
based on the available robot actions (see Section III-A). For ex-
ample, the Attach action can only be executed if the shelf and
robot are co-located and its execution will change the stage
variable in the robot’s state from Idle to ShelfAttached. This
state-action model can be used in single-shot MAPF solving
frameworks with a few modifications.

In Conflict-Based Search (CBS) [21], a conflict occurs if
two robots are at the same location at the same timestep
(vertex conflict) or if two robots traverse the same edge at
the same timestep (edge conflict). The conflict resolution of
CBS is almost identical in the larger warehouse state space,
but we consider an additional conflict if a robot that is carrying
a shelf attempts to occupy a potential shelf location. We use
ECBS-TA [22], a variant of Conflict-Based Search that can
compute a bounded suboptimal solution to simultaneously
assign tasks and find action sequences. ECBS-TA takes an
assignment matrix as input and thus also works with cases
where some robots already have a task assigned (for example,
because they already picked up a shelf), while other robots are
idle.

CBS is not the only algorithm that can be used for MAPF
in this setting. The well-known infrastructure property also
allows us to apply prioritized planning with completeness
guarantees [20]. In this case, an algorithm such as SIPP [23]
can be used, but requires separating the state from the location.
Specifically, all safe intervals are defined for locations only,
while actions chosen change the whole state (including the
location). In the prioritized planning case, task assignment is
done greedily, in the order in which agents are planning their
actions.

Other existing single-shot MAPF solvers, such as reduction-
based solvers [1], might also be used. However, solver-specific
changes are required, similar to the changes presented for CBS
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and SIPP. In particular, additional constraints need to be added
to avoid the case that a robot that is carrying a shelf occupies
a potential shelf location. The task assignment can be done
independently (as in SIPP) or integrated in the MAPF solver
(as in ECBS-TA).

Independent of the MAPF solver used, the input of a single-
shot planner is the current state of all robots (s1, . . . , sR). Let
the output of a planner be a sequence of ni tuples for each
robot i: pi = [(ti1, a

i
1, s

i
1, g

i
1), . . . , (t

i
ni , aini , sini , gini)], where

aik denotes the kth action that should be executed starting at
timestep tik and that changes the robot’s location from sik to
gik. A MAPF planner computes outputs that are collision-free
with respect to the criteria in Section III, when considering t
at fixed timesteps.

An example is shown in Fig. 2a.
The current state of the three robots is
((D,W, T 4,SA), (B,W, T 2,SA), (A,E, T 9,SA)). A valid
MAPF plan is: p1 = [(0,Y, D,D), (1, ↑, D,C), (2,�, C, C)],
p2 = [(0,	, B,B), (1, ↑, B,D), (2,Y, D,D), (3, ↑, D, F )],
and p3 = [(1, ↑, A,B), (2,�, B,B), (3, ↑, B,D)].

B. Action Dependency Graph: Basics

We make use of the idea that a multi-agent plan implicitly
encodes dependencies between robots, for example, defining
which robot should move first through a narrow passage
way. Such dependencies can be extracted in polynomial time
in a post-processing step, similar to MAPF-POST [13]. In
MAPF-POST, the dependencies are created between states
and a simple temporal network is used to create a smooth
schedule with guaranteed safety distances between robots.
In our approach, we define the dependencies on the robots’
actions instead.

1) Construction: We create an action dependency graph
(ADG) GADG = (VADG, EADG) where pik ∈ VADG and
pik refers to the kth tuple in plan pi. Edges in the ADG
represent inter-action dependencies. If (pik, p

i′

k′) ∈ EADG,
then a robot is only allowed to start executing ai

′

k′ after aik
has been completed. The ADG construction is a two-step
process. First, we create all vertices based on all pik and
connect subsequent actions for robot i with so-called Type 1
edges. Second, we find dependencies between different robots,
indicating temporal precedences between actions (so-called
Type 2 edges). The ADG construction pseudo code is shown in
Algorithm 1. The construction is accomplished in O(R2T 2),
where T = maxi n

i. An example ADG is shown in Fig. 2b.
Not all standard MAPF plans can be executed robustly

and collision-free with an arbitrary robot model. For example,
consider four robots that move in a 2 × 2 grid in a circular
motion. While a planner such as CBS would produce a plan,
there is no safe way for robots to execute such a plan because
it requires precise synchronous execution, a property that our
robots do not have. Such an unsafe state transition is easily
detectable as cycle in the constructed ADG. We can also avoid
such cycles during planning, for example by disallowing that
a robot moves out of a cell in the perpendicular direction of
another robot moving into that cell. In the CBS framework
this translates to an additional edge conflict, while in SIPP

Algorithm 1: Action Dependency Graph Construction

Input: Plan pi for each robot.
Result: GADG

1 /* create vertices and Type 1 edges */
2 for i← 1 to R do
3 Add vertex pi1 to VADG

4 p← pi1
5 for k ← 2 to ni do
6 Add vertex pik to VADG

7 Add edge (p, pik) to EADG

8 p← pik

9 /* create Type 2 edges */
10 for i← 1 to R do
11 for k ← 1 to ni do
12 for i′ ← 1 to R do
13 if i 6= i′ then
14 for k′ ← 1 to ni

′
do

15 if sik = gi
′

k′ and tik ≤ ti
′

k′ then
16 Add edge (pik, p

i′

k′) to EADG

17 break

the computation of the earliest arrival time can be adjusted
accordingly.

2) Execution: At execution time, we keep track of the
completion status of each vertex (action) in VADG. Each vertex
can either be staged, enqueued, or finished. We only enqueue
actions into a robot’s command queue if i) the previous vertex
(that is connected by an incoming Type 1 edge) is already
enqueued or finished, and ii) all vertices associated with
incoming Type 2 edges are finished. We mark a vertex as
finished once the robot notifies the execution monitor of the
successful execution of the associated action.

This approach guarantees that a robot will only move into
a location after the previous robot has completely moved out
of that location. While this implies coarser safety distances
than MAPF-POST (the safety distance is a single cell), it re-
quires less communication at runtime and works with arbitrary
dynamic limits. In particular, we only need to track finished
actions rather than the current position of all robots at all times.

If a robot detects an unforeseen obstacle in its path, the robot
stops autonomously, empties its command queue, and notifies
the planner of the new obstacle and the aborted command
queue. New actions will be enqueued, once the planner has
finished re-planning.

Consider the example in Fig. 2c and colored vertices in
Fig. 2b. Robot 1 finished two actions and has one more action
in its command queue, robot 2 finished its turning action and
has three more actions in its command queue, and robot 3 has
no action in its queue. Robot 3 cannot enqueue its next move
action, until robot 2 finishes its move action first.
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Fig. 2. Example of an action dependency graph. a) initial state next to one of the stations with locations A, . . . , F and three robots. b) GADG as constructed
by Algorithm 1. Black horizontal edges are Type 1 edges and all other edges are Type 2 edges. c) current state where some actions in the ADG are finished
and enqueued. Green vertices in the ADG are finished, yellow vertices are enqueued, and gray vertices are staged.

a)

r1

d1, c1

r2

d2, c2

r3
d3 c3

b)

r1
c1

r2
c2

r3
c3

Fig. 3. Overlapping of execution and re-planning. a) Current action dependency graph. Green vertices are finished, yellow vertices are enqueued, and gray
vertices are staged. Robot 2 is going to finish its current plan within the next three actions and therefore re-planning is desired. The desired set of vertices we
want to commit to are labeled with d1, d2, d3. The computed commit cut vertices are labeled with c1, c2, c3, and are not the same as the desired vertices,
because of the red dependency between robot 3 and robot 2. b) Updated ADG after planning with shifted start times for new vertices. Completed vertices
(red) can be deleted.

C. Lifelong Planning

A typical approach for dynamic scenarios is to continuously
re-plan with a finite time horizon, as for example in model
predictive control. However, this requires fast planning and
state estimation. The coupling of robots in multi-robot systems
makes planning typically too slow for this kind of re-planning.
Another method is to plan for the next goal, once one goal
is reached [3]. While this can work in decentralized settings,
it does not work for a centralized planner because it neglects
the finite runtime of the planner and would cause all robots
to stall while a new plan is computed. Thus, it is desirable
to overlap planning and execution, such that there is no delay
when re-planning occurs.

Our approach is based on action dependency graphs. We
detect cases when re-planning is required: either if a robot
senses an obstacle on its current path or if at least one robot
has an estimated fixed duration of execution remaining in the
ADG. In order to overlap planning and execution, we need
to find a set of committed vertices in VADG that defines the
actions that the robots will execute before switching to the
new plan. We use the term commit cut as the set of the last
actions, one for each robot, that is a subset of the committed
vertices. We allow continued execution of the old plan up until
the commit cut. In parallel, we re-plan by constructing the start
state for our single-shot MAPF planner from the final state that
would be reached after the commit cut. If desired, re-planning
can use the old plan as seed to find a new solution quicker.

In order to ensure a valid transition between the old and the
new plan, we need to find the commit cut in the old plan, such
that the old committed plan is consistent with its dependencies.
We compute the commit cut in four steps, see Algorithm 2:
First, we define a desired set of vertices we want to commit
to, one for each robot. These vertices should be chosen such
that the remaining execution time to finish those actions is
larger than the expected planning time. Such a measure might

require domain specific tuning, which is encapsulated in the
helper function ComputeDesiredSet, see line 1. In Fig. 3
we chose the desired set to be the actions that will be finished
in three MAPF schedule timesteps. Second, we compute the
reverse graph of GADG, where the direction of all edges is
reversed, see line 2. Third, we find the reachable set of vertices
by executing an exhaustive search on the reverse graph of
GADG starting with the set of desired vertices, see lines 3 –
10. The reachable set of vertices is a superset of the desired
vertices and defines the set of committed vertices. Fourth, we
find the latest occurring action for each robot in the set of
committed vertices, which defines the robot’s commit cut, see
lines 11 – 12.

Algorithm 2: Compute Commit Cut
Input: GADG

Result: commit cut ci ∈ VADG for i = 1, . . . , R
1 {d1, . . . , dR} ← ComputeDesiredSet(GADG)
2 G′ADG ← (VADG, E ′ADG) where
E ′ADG = {(u, v)|(v, u) ∈ EADG}

3 reachable← ∅
4 q ← Queue({d1, . . . , dR})
5 while q not empty do
6 pik ← Dequeue(q)
7 reachable← reachable ∪ {pik}
8 for (pik, u) ∈ E ′ADG do
9 if u 6∈ reachable then

10 Enqueue(q, u)

11 for j ← 1 to R do
12 cj ← argmaxk{pik|pik ∈ reachable ∧ i = j}

We use the robots’ states after the commit cut as starting
point for our single-shot MAPF planner, with one small ad-
justment: we synchronize the time, using the maximum of all
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timesteps tji of the commit cut vertices. This ensures that there
will be no dependencies from the new plan to the old plan.
The new plan can be added to the ADG, and dependencies
computed according to Algorithm 1. Dependencies may exist
from the old plan to the new plan, but the construction of
our commit cut disallows dependencies from the new plan to
the old plan. Finally, finished vertices can be safely deleted,
to keep memory usage small. An example of our approach is
shown in Fig. 3.

V. EVALUATION

We implement our approach in C++, using our ECBS-
TA implementation [22] and boost graph for our ADG data
structure. In our experiments, we demonstrate persistence
and robustness in simulation and mixed reality. Our method
also provides a significant performance gain over a baseline
implementation. A video of our experiments is provided in the
supplemental material.

A. Simulation

We evaluate our approach in simulation using HAR-
MONIES1, a simulator developed at Amazon Robotics specif-
ically for quantifying academic results in warehouse-like en-
vironments. HARMONIES implements the robot model as
discussed in Section III-A, where robots have acceleration
limits (which are not modeled in most MAPF planners,
including ours). The simulator runs on Amazon Web Services,
executes actions in real-time, and provides a RESTful API.
Simulator client applications can enqueue actions and receive
errors/statistics during the execution, including the number
of occurred collisions and the station utilization u(t). Our
client was executed on a laptop (i7-4600U 2.1GHz and 12GB
RAM).

We evaluate persistence by counting the number of staged
actions in the ADG per robot at a fixed time interval of 0.5 s.
The unnecessary wait time for a robot is the cumulative time
while the robot had no actions staged; the total unnecessary
wait time is the sum of all per-robot wait times. We test
our approach on the “small 1” scenario in HARMONIES (50
robots, 600 shelves, 8 stations). We use ECBS-TA with a
bounded suboptimal factor of 2; trigger re-planning if there
are fewer than 10 actions in a robot’s queue; and use a
lookahead of 10 actions for the selection of the desired set
of commit cut vertices. These settings were found empirically
to be sufficiently large to overlap re-planning and execution,
see Fig. 4. Re-planning takes on average 15 s and is thus a
significant factor when minimizing wait times. In our experi-
ment, there was no unnecessary wait time and we achieved
a station utilization of u(500) = 0.24. We also evaluated
robustness by measuring the number of reported collisions
from the HARMONIES simulator, which for our experiments
was zero.

1High-fidelity Autonomous-agent Research in Motion-planning and
Organization over a Network at Industrial Exhibited Scale; For more infor-
mation contact harmonies@amazon.com.
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Fig. 4. Overlap of planning and execution. The red parts mark timespans
used for re-planning (an average of 15 s). The blue line shows the minimum
number of staged actions over all 50 agents. This line never drops to zero after
the initial plan was found, indicating that re-planning and execution always
overlapped.

B. Mixed Reality Experiment

We implement our approach in a mixed reality experi-
ment [24], which allows us to show robustness with respect
to newly appearing obstacles and unmodeled dynamics. We
use Gazebo as our virtual environment as well as our robotics
simulator. Our custom Gazebo world plugin has three types
of differential drive robot models: i) simulated agents that do
not use the physics engine and move perfectly with a constant
velocity; ii) simulated robots that use a physics engine and
are modeled after the iRobot Create2 robots; and iii) physical
iRobot Create2 robots. All three robot types have different
(and in the discrete planning problem, unmodeled) dynamics.
Shelves and stations are visualized only and not modeled using
the physics engine for all robots.

Our iRobot Create2 robots are equipped with one of
ODROID C1+ or ODROID XU4 single-board computers that
run Ubuntu 16.04 with ROS Kinetic. Controller and command
queues are executed on-board the robots. State estimation is
done using a motion capture system. The robots communicate
with the simulator using ROS services. These services are
used to enqueue new actions and to send notifications of
successfully completed actions.

In our experiment, we use a total of 12 robots: 6 physical
robots, 2 simulated robots, and 4 simulated agents. The robots
have different dynamics based on their type. For physical
robots, battery level also affects their dynamics. None of the
dynamics were explicitly modeled in our MAPF solver. During
the run, we introduce an unknown (virtual) obstacle, which
robots can detect in our mixed reality setting. Furthermore,
we artificially change the maximum speed of one of the
robots during a time period. No collisions occurred during our
experiment, showing that our approach is robust to varying
and unforeseen dynamics. We demonstrate persistence by
executing our experiment for several minutes such that each
robot finished more than a single task without any execution
delays caused by re-planning. A screenshot is shown in Fig. 1.

C. Baseline

We compare our approach to a simple baseline that, like
our approach, is an execution framework relying on existing
MAPF solvers. Our baseline approach executes the MAPF

harmonies@amazon.com
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Fig. 5. Station utilization of our approach compared to a baseline over
time on the “small 1” scenario in HARMONIES. Bars represent the station
utilization for a time period, e.g., our approach reached a station utilization
of 0.37 during t ∈ [100, 200], while the baseline reached a station utilization
of 0.05 during the same time. The dashed lines show the utilization after 500
seconds, i.e., u(500), for our approach and the baseline.

schedule synchronously, that is, we only enqueue one action
per timestep per robot, and wait until all robots finished
executing their current action before enqueuing actions for the
next timestep. This baseline is comparable to the ALLSTOP
strategy in previous work [14]. If an unforeseen obstacle is
detected, or at least one robot finishes its current schedule,
synchronous re-planning is triggered. This baseline provides
persistence and robustness like our approach, but causes robots
to spend a significant amount of time waiting rather than
executing actions.

We use the HARMONIES simulator on the same scenario
with the same settings as in Section V-A. Using the baseline,
the achieved station utilization is u(500) = 0.09 — over 2.5
times lower compared to our approach. The utilization of the
baseline and our approach over time is shown in Fig. 5.

VI. CONCLUSION
We present an execution framework that can be used to

execute MAPF plans on physical robots persistently and
robustly. We demonstrate both properties in a mixed reality
experiment and in simulation. For persistence, we show that
planning and execution can be overlapped such that robots
do not have to wait until the planner finds a new solution.
For robustness, we test with unknown, time-varying dynamic
limits as well as a randomly appearing obstacle.

We believe that our approach closes the gap between recent
advances in multi-agent path finding algorithms from the
artificial intelligence community and practical applications
in robotics. Our approach can be used with existing MAPF
planners with slight modification and requires little additional
computation to ensure persistent and robust execution. It
also uses significantly less communication than other existing
execution frameworks, such as MAPF-POST. In the future, we
hope that our method will allow researchers and practitioners
to apply and study MAPF planners in additional realistic
persistent applications.
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