
Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control Policies to
Multiple Quadrotors

Artem Molchanov∗, Tao Chen∗, Wolfgang Hönig, James A. Preiss, Nora Ayanian and Gaurav S. Sukhatme

Abstract— Quadrotor stabilizing controllers often require
careful, model-specific tuning for safe operation. We use rein-
forcement learning to train policies in simulation that transfer
remarkably well to multiple different physical quadrotors.
Our policies are low-level, i.e., we map the rotorcrafts’ state
directly to the motor outputs. The trained control policies
are very robust to external disturbances and can withstand
harsh initial conditions such as throws. We show how dif-
ferent training methodologies (change of the cost function,
modeling of noise, use of domain randomization) might affect
flight performance. To the best of our knowledge, this is the
first work that demonstrates that a simple neural network
can learn a robust stabilizing low-level quadrotor controller
(without the use of a stabilizing PD controller) that is shown
to generalize to multiple quadrotors. The video of our ex-
periments can be found at https://sites.google.com/
view/sim-to-multi-quad.

I. INTRODUCTION

Traditional control-theoretic approaches to stabilizing a
quadrotor often require careful, model-specific system iden-
tification and parameter tuning to succeed. We are inter-
ested in finding a single control policy that stabilizes any
quadrotor and moves it to a goal position safely, without
manual parameter tuning. Such a control policy can be very
useful for testing of new custom-built quadrotors, and as
a backup safety controller. Our primary objective for the
controller is robustness to external disturbances and recovery
from collisions. Our secondary objective is position control
and trajectory tracking. In our work, we use reinforcement
learning trained on simulated quadrotor models to learn a
control policy. To close the gap between simulation and
reality, we analyze the impact of various key parameters,
such as modeling of sensor noise and using different cost
functions. We also investigate how we can improve sim-
to-real transfer (S2R) by applying domain randomization,
a technique that trains over a distribution of the system
dynamics to help trained policies be more resistant to a
simulator’s discrepancies from reality [1]–[4]. We transfer
our policy to three different quadrotor platforms and provide
data on hover quality, trajectory tracking, and robustness to
strong disturbances and harsh initial conditions.

To the best of our knowledge, ours is the first neural
network (NN) based low-level quadrotor attitude-stabilizing
(and trajectory tracking) policy trained completely in simu-
lation that is shown to generalize to multiple quadrotors. Our
contributions can be summarized as follows:

*Equal contribution
Authors are with the Department of Computer Science, University

of Southern California, Los Angeles, USA {molchano, taochen,
whoenig, japreiss, ayanian, gaurav}@usc.edu

Fig. 1. Three quadrotors of different sizes controlled by the same policy
trained entirely in simulation.

• A system for training model-free low-level quadrotor sta-
bilization policies without any auxiliary pre-tuned con-
trollers.

• Successful training and transfer of a single control policy
from simulation to multiple real quadrotors.

• An investigation of important model parameters and the
role of domain randomization for transferability.

• A software framework for flying Crazyflie 2.0 (CF) based
platforms using NN controllers and a Python-based sim-
ulated environment compatible with OpenAI Gym [5] for
training transferable simulated policies1.

II. RELATED WORK

Transferring from simulation to reality (S2R) is a very
attractive approach to overcome the issues of safety and
complexity of data collection for reinforcement learning on
robotic systems. In the following we group the related work
into different categories.

S2R with model parameter estimation. A substantial
body of work considers closing the S2R gap by carefully
estimating parameters of the real system to achieve a more
realistic simulation. For example, Lowrey et al. [6] transfer
a non-prehensile manipulation policy for a system of three
one-finger robot arms pushing a single cylinder. Tan et
al. [4] show transferability of agile locomotion gaits for
quadruped robots. Antonova et al. [7] learn a robust policy
for rotating an object to a desired angle. While careful pa-
rameter estimation can provide a good estimate of the model,
it often requires sophisticated setups [8]. To avoid these
complications, we focus on transferring to novel quadrotors

1Available at https://sites.google.com/view/sim-to-multi-quad.

https://sites.google.com/view/sim-to-multi-quad
https://sites.google.com/view/sim-to-multi-quad
https://sites.google.com/view/sim-to-multi-quad

for which we do not perform accurate model parameter
estimation.

S2R with iterative data collection. An alternative way to
overcome the problem of S2R gap is learning distributions
of dynamics parameters in an iterative manner. For example,
Christiano et al. [9] learn inverse dynamics models from
data gradually collected from a real robotics system, while
transferring trajectory planning policy from a simulator.
Chebotar et al. [10] and Zhu et al. [11] transfer manipulation
policies by iteratively collecting data on the real system
and updating a distribution of dynamics parameters for the
simulator physics engine. Similar principles work for the
problem of humanoid balancing [12].

The common problem of these approaches is the necessity
to execute untrained policies directly on the robot, which may
raise safety concerns. In contrast to all of the works presented
above, we are interested in a method that can i) transfer
very low-level policies that directly control actuator forces,
ii) transfer to multiple real robots with different dynamics,
iii) control inherently unstable systems with dangerous con-
sequences of failures, iv) avoid the need for data collection
on the real system with a possibly unstable policy, and v)
avoid complex setups for system parameter estimation.

Domain randomization. Domain randomization (DR) [1]
is a simple albeit promising domain adaptation technique that
is well suited for S2R. It compensates for the discrepancy
between different domains by extensively randomizing pa-
rameters of the training (source) domain in simulation. In
some cases, it can eliminate the need for data collection on
the real robot completely. DR has been successfully applied
for transferring visual features and high level policies. Tobin
et al. [1] employ DR for training a visual object position
predictor for the task of object grasping. The policy is trained
in a simulation with random textures and lightning. A similar
direction explores intermediate-level representations, such
as object corners identification, and trained an interpretable
high-level planning policy to stack objects using the Baxter
robot [13].

S2R transfer of dynamics and low-level control policies
is considered a more challenging task due to the complexity
of realistic physics modeling. Nonetheless, there have been
some promising works. Peng et al. [14] apply DR to the
task of pushing an object to a target location using a Fetch
arm. The policy operates on joint angle positions instead of
directly on torques. Mordatch et al. [15] transfer a walking
policy by optimizing a trajectory on a small ensemble
of dynamics models. The trajectory optimization is done
offline for a single Darwin robot. In contrast, our work does
not require careful selection of model perturbations and is
evaluated on multiple robots.

S2R for quadrotor control. S2R has also been applied to
quadrotor control for transferring high-level visual navigation
policies. Most of these works assume the presence of a low-
level controller capable of executing high-level commands.
Sadeghi et al. [2] apply CNN trained in simulation to gener-
ate a high level controller selecting a direction in the image
space that is later executed by a hand-tuned controller. Kang

et al. [16] look at the problem of visual navigation using a
Crazyflie quadrotor and learn a high-level yaw control policy
by combining simulated and real data in various ways.

The approaches most related to ours are the works of Koch
et al. [17] and Hwangbo et al. [18]. In the former work, a
low-level attitude controller is replaced by a neural network
and transferred to a real quadrotor [17]. In the latter work, a
low-level stabilizing policy for the Hummingbird quadrotor
that is trained in simulation is transferred to the Humming-
bird. In contrast to their work i) we assume minimal prior
knowledge about quadrotor’s dynamics parameters; ii) we
transfer a single policy to multiple quadrotor platforms; iii)
we simplify the cost function used for training the policy; iv)
we investigate the importance of different model parameters
and the role of domain randomization for S2R transfer of
quadrotor’s low-level policies; and v) unlike Hwangbo et al.
[18] we do not use auxiliary pre-tuned PD controller in the
learned policy.

III. PROBLEM STATEMENT

We aim to find a policy that directly maps the current
quadrotor state to rotor thrusts. The quadrotor state is de-
scribed by the tuple (ep, ev, R, eω), where ep ∈ R3 is the
position error, ev ∈ R3 is the linear velocity error of the
quadrotor in the world frame, eω is the angular velocity error
in the body frame, and R ∈ SO(3) is the rotation matrix
from the quadrotor’s body coordinate frame to the world
frame. The objective is to minimize the norms of ep, ev, eω
and drive the last column of R to [0, 0, 1]T in the shortest
time. The policy should be robust, i.e., it should be capable
of recovering from different initial conditions, as well as
transferable to other quadrotor platforms while retaining high
performance. We make the following assumptions:

• We only consider quadrotors in the × configura-
tion (Fig. 2). This configuration is the most widely used,
since it allows convenient camera placement. It would not
be possible for a single policy to control both + and× con-
figurations without some input specifying the configuration
of the current system, since the fundamental geometric
relationship between the motors and the quadrotor’s axes
of rotation is altered.

• We assume access to reasonably accurate estimates of
the quadrotor’s position, velocity, orientation, and angular
velocity. Similar assumptions are typical in the robotics
literature. They are commonly satisfied in practice by
fusion of inertial measurements with localization from one
or more of the following: vision, LIDAR, GPS, or an
external motion capture system.

• We consider quadrotors within a wide but bounded range
of physical parameters2. The ranges we experiment with
are presented in Table I.

2This assumption is introduced to restrict our system to typical quadro-
tor shapes and properties. We are not considering edge cases, such as very
high thrust-to-weight ratios, or unusual shapes with a large offset of the
center of mass with respect to quadrotor’s geometric center.

lbaselink,l

lbody,l

lbody,w

lbaselink,w

lpayload,w

lpayload,l

lrotor,r

larm,l
lmotor,r

larm,w

f1

f2

f4

f3

Z

X

Y

αa

lbaselink,l

ccw

ccw

cw

cw

Fig. 2. Top-down view of our generalized quadrotor model. There are 5
components: baselink, payload, 4 arms, 4 motors, and 4 rotors. The model
always assumes the × configuration, with the front and left pointing at
the positive X and Y directions respectively. Motors are indexed in the
clockwise direction starting from the front-right motor. The front-right motor
rotates counterclockwise and generates a thrust force f1.

IV. DYNAMICS SIMULATION

In this section we describe our dynamics model for
simulation in detail.

A. Rigid Body Dynamics for Quadrotors
We treat the quadrotor as a rigid body with four rotors

mounted at the corners of a rectangle. This rectangle lies
parallel to the x−y plane of the body coordinate frame, as do
the rotors. Each rotor is powered by a motor that only spins
in one direction, hence the rotors can only produce positive
thrusts in the z-direction of the body frame. The origin of the
body frame is placed in the center of mass of the quadrotor.
The dynamics are modeled using Newton-Euler equations:

m · ẍ = m · g +R · F (1)

ω̇ = I−1(τ − ω × (I · ω)) (2)

Ṙ = ω×R, (3)

where m ∈ R>0 is the mass, ẍ ∈ R3 is the acceleration in
the world frame, g = [0, 0,−9.81]T is the gravity vector,
R ∈ SO(3) is the rotation matrix from the body frame to
the world frame, F ∈ R3 is the total thrust force in the body
frame, ω ∈ R3 is the angular velocity in the body frame,
I ∈ R3×3 is the inertia tensor, τ ∈ R3 is the total torque in
the body frame, and ω× ∈ R3×3 is a skew-symmetric matrix
associated with ω rotated to the world frame.

The total torque τ is calculated as:

τ = τ p + τ th, (4)

where τ th is a thruster torque, produced by thrust forces [19],
τ p is a torque along the quadrotor’s z-axis, produced by
difference in speed rotation of the propellers:

τ p = rt2t · [+1,−1,+1,−1]T � f , (5)

where rt2t is a torque to thrust coefficient, −1 indicates the
rotor turns clockwise, +1 indicates the rotor turns counter-
clockwise, and f = [f1, f2, f3, f4]T is a vector representing
the force generated by each rotor.

B. Normalized Motor Thrust Input

It is common in the literature of quadrotor control to
assume that the motor speed dynamics are nearly instanta-
neous. This assumption allows us to treat each motor’s thrust
as a directly controlled quantity. In this paper, to facilitate
transfer of the same policy to multiple quadrotors, we instead
define a normalized control input f̂ ∈ [0, 1]4 such that f̂ = 0
corresponds to no motor power and f̂ = 1 corresponds to
full power. Note that the nominal value of f̂ for a hover state
depends on the thrust-to-weight ratio of the quadrotor. By
choosing this input, we expect the policy to learn a behavior
that is valid on quadrotors with different thrust-to-weight
ratios without any system identification needed. The input
f̂ is derived from the policy action a ∈ R4 by the affine
transformation

f̂ = 1
2 (a + 1) (6)

to keep the policy’s action distribution roughly zero-mean
and unit-variance. Since thrust is proportional to the square
of rotor angular velocity, we also define û =

√
f̂ as the

normalized angular velocity command associated with a
given normalized thrust command.

C. Simulation of Non-Ideal Motors

The assumption of instantaneous motor dynamics is rea-
sonable for the slowly-varying control inputs of a human
pilot, but it is unrealistic for the noisy and incoherent control
inputs from an untrained stochastic neural network policy. To
avoid training a policy that exploits a physically implausible
phenomenon of the simulator, we introduce two elements to
increase realism: motor lag simulation and a noise process.

a) Motor lag: We simulate motor lag with a discrete-
time first-order low-pass filter:

û′t =
4dt

T
(ût − û′t−1) + û′t−1, (7)

where û′t ∈ R4 is the vector of the filtered normalized rotor
angular velocities, dt is the time between the inputs and T ≥
4dt is the 2 % settling time, defined for a step input as

T = dt ·min{t ∈ N : ‖û′t′ − û′t‖∞ < 0.02 for all t′ ≥ t}.
(8)

b) Motor noise: We add motor noise εut following a
discretized Ornstein-Uhlenbeck process:

εut = εut−1 + θ(µ− εut−1) + σN (0, 1), (9)

where µ = 0 is the process mean, θ is the decay rate, σ
is the scale factor, and N (0, 1) is a random variable with
four-dimensional spherical Gaussian distribution.

The final motor forces are computed as follows:

f = fmax · (û′t + εut)2. (10)

TABLE I
RANDOMIZATION VARIABLES AND THEIR DISTRIBUTIONS.

Variable Unit
Nominal
Randomiza-
tion

Total Randomization

m kg 0.028 ≤ 5
lbody,w m 0.065 ∼ U(0.05, 0.2)
T s 0.15 ∼ U(0.1, 0.2)
rt2w kg/N 1.9 ∼ U(1.8, 2.5)

rt2t s−2 0.006 ∼ U(0.005, 0.02)

Here, fmax is found using the thrust-to-weight ratio rt2w:

fmax = 0.25 · g ·m · rt2w, (11)

where g is the gravity constant.

D. Observation Model

In addition to the motor noise, we also model sensor and
state estimation noise. Noise in estimation of position and
orientation as well as in linear velocity is modeled as zero-
mean Gaussian. Noise in angular velocity measured by the
gyroscope follows the methods presented by Furrer et al.
[20]. Sensor noise parameters were roughly estimated from
data recorded while quadrotors were resting on the ground.

E. Numerical Methods

We use first-order Euler’s method to integrate the dif-
ferential equations of the quadrotor’s dynamics. Due to
numerical errors in integration, the rotational matrix R loses
orthogonality over time. We re-orthogonolize R using the
Singular Value Decomposition (SVD) method. We perform
re-orthogonolization every 0.5s of simulation time or when
the orthogonality criteria fails:

‖RRT − I3×3‖1 ≥ 0.01, (12)

where ‖·‖1 denotes the elementwise L1 norm. If UΣV T = R
is the singular value decomposition of R, then R⊥ = UV T

is the solution of the optimization problem

minimize
A∈R3×3

‖A−R‖F subject to ATA = I, (13)

where ‖ · ‖F denotes the Frobenius norm [21], making R⊥ a
superior orthogonalization of R than, e.g., that produced by
the Gram-Schmidt process.

V. LEARNING & VERIFICATION

In this section, we discuss the methodology we use to train
a policy, including the domain randomization of dynamics
parameters, the reinforcement learning algorithm, the policy
class, and the basic structure of our experimental validations.
More details of the experiments are given in Section VI.

A. Randomization

We investigate the role of domain randomization for gener-
alization toward models with unknown dynamics parameters.
The geometry of the generalized quadrotor is defined by
variables shown in Fig. 2. For brevity, we omit the height
variables (l∗,h, where ∗ is the component name) in the figure.
Table I shows the list of variables we randomize.

During training, we sample dynamics parameters for each
individual trajectory. We experiment with two approaches for
dynamics sampling:
1) Randomization of parameters around a set of nominal

values assuming that approximate estimates of the pa-
rameters are available. We use existing Crazyflie 2.0
parameter estimates [8].

2) Randomization of parameters within a set of limits.
The method assumes that the values of parameters are
unknown but bound by the limits.

In the first scenario, we randomize all parameters describ-
ing our quadrotor around a set of nominal values, and in
case a Gaussian distribution is used, we check the validity
of the randomized values (mostly to prevent negative values
of inherently positive parameters). In the second scenario, we
start by sampling the overall width of the quadrotor (lbody,w)
and the rest of the geometric parameters are sampled with
respect to it. The total mass m of the quadrotor is computed
by sampling densities of individual components. The inertia
tensors of individual components with respect to the body
frame are found using the parallel axis theorem.

B. Policy Representation

We use a fully-connected neural network to represent a
policy. The neural network has two hidden layers with 64
neurons each and the tanh activation function, except for the
output layer that has the linear activation. The network input
is an 18-dimensional vector representing the quadrotor state
presented in Section III. Rather than inputting the current
state and a goal state, we input only the error between the
current and goal state, except for the rotation matrix which
represents the current orientation. This reduces the input
dimensionality, and trajectory tracking is still possible by
shifting the goal state. In our policy we do not use any
additional stabilizing PID controllers and directly control the
motor thrusts, in contrast to existing approaches [18]. Hence,
our neural network policy directly outputs the normalized
thrust commands a that are later converted to the normalized
force commands f̂ (see Eq. (6)).

C. Policy Learning

The policy is trained using the Proximal Policy Opti-
mization (PPO) algorithm [22]. PPO has recently gained
popularity for its robustness and simplicity. PPO is well-
suited for RL problems with continuous state and action
spaces where interacting with the environment is not con-
sidered expensive. We use the implementation available
in Garage3, a TensorFlow-based open-source reinforcement
learning framework. This framework is an actively supported
and growing reincarnation of the currently unsupported rllab
framework [23].

During training, we sample initial states uniformly from
the following sets: orientation is sampled from the full
SO(3) group, position within a 2 m box around the goal
location, velocity with a maximum magnitude of 1 m/s, and
angular velocity with a maximum magnitude of 2π rad/s.

3https://github.com/rlworkgroup/garage

https://github.com/rlworkgroup/garage/commit/77714c38d5b575a5cfd6d1e42f0a045eebbe3484

The goal state is always selected to hover at [0, 0, 2]T in the
world coordinates. At execution time, we can translate the
coordinate system to use the policy as a trajectory tracking
controller. We parameterize the quadrotor’s attitude with a
rotation matrix instead of a quaternion because the unit
quaternions double-cover the rotation group SO(3), meaning
that a policy with a quaternion input must learn that the
quaternions q and −q represent the same rotation.

The reinforcement learning cost function is defined as

ct = (‖ep‖2 + αv ‖ev‖2 + αω ‖eω‖2 + αa ‖a‖2
+ αR cos−1 ((Tr(R)− 1)/2))dt,

(14)

where R is the rotation matrix and αω, αa, αR, αv are non-
negative scalar weights. The term cos−1 ((Tr(R)− 1)/2)
represents the angle of rotation between the current orienta-
tion and the identity rotation matrix. We investigate influence
of different components in the experimental section.

D. Sim-to-Sim Verification
Before running the policy on real quadrotors, the policy

is tested in a different simulator. This sim-to-sim transfer
helps us verify the physics of our own simulator and the
performance of policies in a more realistic environment.
In particular, we transfer to the Gazebo simulator with the
RotorS package [20] that has a higher-fidelity simulation
compared to the one we use for training.

Gazebo by default uses the ODE physics engine, rather
than our implementation of the Newton-Euler equations.
RotorS models rotor dynamics with more details, e.g. it
models drag forces which we neglect during learning. It
also comes with various pre-defined quadrotor models, which
we can use to test the performance of trained policies for
quadrotors where no physical counterpart is available.

We found that using our own dynamics simulation for
learning is faster and more flexible compared to using
Gazebo with RotorS directly.

E. Sim-to-Real Verification
We verify our approach on various physical quadrotors

that are based on the Crazyflie 2.0 platform. The Crazyflie
2.0 is a small quadrotor that can be safely operated near
humans. Its light weight (27 g) makes it relatively crash-
tolerant. The platform is available commercially off-the-shelf
with an open-source firmware. We build heavier quadrotors
by buying standard parts (e.g., frames, motors) and using the
Crazyflie’s main board as a flight computer.

We test policies by sequentially increasing quadrotor size
(starting with the Crazyflie 2.0) for safety reasons. We
quantify the performance of our policies using three different
experiments. First, we evaluate the hover quality by tasking
the quadrotor to hover at a fixed position and record its
pose at a fixed frequency. For each sample, we compute the
Euclidean position error ‖ep‖ and the angular error ignoring
yaw:

eθ = arccos(R(:, 3) · [0, 0, 1]T) = arccosR(3, 3), (15)

where R(:, 3) is the last column of the rotation matrix R,
and R(3, 3) is its bottom-right element. We denote the mean

TABLE II
ROBOT PROPERTIES.

Robot CF Small Medium
Weight [g] 33 73 124
lbody,w [mm] 65 85 90
lrotor,r [mm] 22 33 35
rt2w (approximate) 1.9 2.0 2.7

of the position and angular errors over all collected hover
samples as eh (in m) and ēθ (in deg), respectively. We
characterize oscillations by executing a fast Fourier transform
(FFT) on the roll and pitch angles, and report fo (in Hz)
– the highest frequency with a significant spike. Second,
we evaluate the trajectory tracking capabilities by tasking
the quadrotor to track a pre-defined figure-eight trajectory
and record the position errors ‖ep‖ (in m). We denote the
mean of the errors during the flight as et. Finally, we disturb
the quadrotors and check if they recover using our policies
(an experiment that is difficult to quantify on a physical
platform.)

VI. EXPERIMENTS

We validate our control policies on three different quadro-
tors with varying physical properties: Crazyflie 2.0, small,
and medium size as described in Table II. All quadrotors use
a similar control board with a STM32F405 microcontroller
clocked at 168 MHz, executing the same firmware. We use
the Crazyswarm testbed [24] for our experiments. In partic-
ular, the state estimate is computed by an extended Kalman
filter (EKF) that fuses on-board IMU data and motion cap-
ture information. For the experiments with trajectories, we
upload them at the beginning of the flight and compute the
moving goal states on-board. We make three major changes
to the firmware: First, we add a control policy, which is
an auto-generated C-function from the trained NN model
in TensorFlow. Second, we remove the software low-pass
filter of the gyroscope, and increase the bandwidth of its
hardware low-pass filter. We found that the reduction in
the gyroscope delay significantly reduces the quadrotor’s
physical oscillations when controlled by our policy. Third,
we only use the motion capture system to estimate linear
velocities using finite differences and ignore accelerometer
readings. We found that the velocity estimates were nois-
ier otherwise, which caused a large position offset when
using our policy. Whenever we compare to a non-learned
controller, we use the default Crazyswarm firmware without
our modifications. Our motion capture system captures pose
information at 100 Hz; all on-board computation (trajectory
evaluation, EKF, control) is done at 500 Hz. Evaluating the
neural network takes about 0.8 ms.

To train the policy, we collect 40 simulated trajectories
with a duration of 7 s (i.e. 4.7 min of simulated flight) at
each iteration of PPO. In simulation the policy runs at 100 Hz
and the dynamics integration is executed at 200 Hz. Samples
for training are collected with the policy rate. We train the
majority of our policies for 3000 iterations, which we found
sufficient for convergence. The exception is the scenarios
with randomization, for which we run 6000 iterations due to

slower convergence. In each scenario, we train five policies
by varying the seed of the pseudorandom number generator
used to generate the policy’s stochastic actions and inject
noise into the environment. For the test on the real system,
we select the two best seeds according to the average (among
trajectories) sum-over-trajectory Euclidean distance cost (i.e.
‖ep‖) computed during policy training. After that, we visu-
ally inspect the performance of the two seeds in simulation
and select the one that generates smoother trajectories and
exhibits smaller attitude oscillations (a subjective measure).

A. Ablation Analysis on Cost Components

We analyze the necessity of different terms in the RL
training cost function (14) on the flight performance in sim-
ulation and on a real quadrotor, because we are interested in
a simpler cost function with fewer hyper-parameters. During
training, we use approximate parameters of the Crazyflie
2.0 quadrotor model [8]. Here, we do not apply parameter
randomization, but we incorporate sensor and thrust noise.
We let the quadrotor hover at a fixed point and record its
pose at 100 Hz for 10 s and report the mean position error
eh, mean angular error ēθ, and oscillation frequency fo, as
defined in Section V-E. Our results are shown in Table III.

We notice that we can train a successful policy with a cost
that only penalizes position, angular velocity, and actions, as
long as αω is larger than 0.05 but smaller than 1 (see rows
1 – 6 in Table III). The optimal value of αω differs slightly:
in simulation αω = 0.25 achieves the lowest position and
angular errors. On the real quadrotor, we notice that higher
αω can result in significantly higher errors in position. Thus,
we chose αω = 0.1, αa = 0.05 (and αR = αv = 0) as a
baseline for our further experiments.

We can add a cost for rotational errors by setting αR > 0,
which improves position and angular errors in simulation,
but results in slightly larger position errors on the physical
quadrotor (see rows 7 and 8 in Table III) compared to the
baseline. The major advantage of this added cost is that it
also stabilizes yaw, which might be desired for takeoff or if
the quadrotor is carrying a camera.

Finally, we compared our cost function with the cost
function that is similar to the one previously introduced
by [18]. It additionally includes cost on linear velocity (i.e.
αv > 0; see row 9 in Table III). This cost function is harder to
tune because of the larger number of hyper-parameters. The
learned policy showed slightly worse position and angular
errors in simulation and on the physical robot. All policies
did not show any significant oscillations (fo ≤ 1.2 Hz).

B. Sim-to-Real: Learning with Estimated Model

Based on our findings in Section VI-A, we use the cost
function with parameters αω = 0.1, αa = 0.05 and test the
influence of noise and motor delays (settling time) in a tra-
jectory tracking task on the Crazyflie 2.0. The task includes
taking off, flying a figure-eight at moderate speeds (up to
1.6 m/s, 5.4 m/s2, 24 deg roll angle; 5.5 s long), and landing.
In all cases, we do not perform model randomization.

As a baseline, we use the non-linear controller that is part
of the Crazyswarm using default gains (“Mellinger”), where

TABLE III
ABLATION ANALYSIS ON COST COMPONENTS.

α VALUES NOT LISTED ARE 0.

Cost RotorS CF
Parameters eh ēθ fo eh ēθ fo

1 αω : 0.00, αa : 0.05 Training failed
2 αω : 0.05, αa : 0.05 No Takeoff 0.14 3.52 1.0
3 αω : 0.10, αa : 0.05 0.05 0.84 1.0 0.09 2.07 0.9
4 αω : 0.25, αa : 0.05 0.05 0.02 0.7 0.21 2.59 0.6
5 αω : 0.50, αa : 0.05 0.08 0.07 0.5 0.30 2.34 0.5
6 αω : 1.00, αa : 0.05 Training failed

7 αω : 0.10, αa : 0.05
αR : 0.25

0.06 0.02 1.1 0.14 1.67 1.0

8 αω : 0.10, αa : 0.05
αR : 0.50

0.04 0.01 0.8 0.14 1.51 0.8

9 αω : 0.075, αa : 0.050,
αR : 0.000, αv : 0.125
(cmp. [18])

0.04 4.31 1.2 0.14 3.73 1.0

−1.0 −0.5 0.0 0.5 1.0
Y [m]

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

X
[m

]

Target position
NN
NN w/o delay

Mellinger
Mellinger (no memory)

Fig. 3. Trajectory tracking performance of a Crazyflie 2.0 using different
controllers. The target trajectory is a figure-eight (to be executed in 5.5 s).
The Mellinger controller has the lowest tracking error (0.11 m). Our
baseline NN controller has lower tracking error (0.19 m) than the Mellinger
(no memory)(0.2 m), i.e. the version of the controller with the integral gains
disabled.

we observe an average Euclidean position error of 0.11 m.
A second baseline is the same controller where we remove
any computation that requires an additional state (“Mellinger
(no memory)”), i.e., we set the gains for the integral terms
to zero. As expected, the average position error increases –
in this case to 0.2 m.

Our neural network with the motor settling time T = 0.15
has a mean position error of 0.19 m, which is similar to the
hand-tuned baseline controller without memory. A network
trained without motor delays (T nearly zero) overshoots
frequently and has a larger mean position error of 0.21 m.
If the network is trained without sensor and motor noise,
we measure a mean position error of 0.24 m. The standard
deviation of the norm of the position error for the neural
networks is nearly twice as high as for the non-linear
feedback controller (0.06 and 0.11, respectively). Plots for
some controllers are shown in Fig. 3.

Note that none of our policies are explicitly trained for
trajectory tracking. Nonetheless, they still show competitive
tracking performance compared to the baseline trajectory-

TABLE IV
SIM-TO-MULTI-REAL RESULTS.

Policy CF Small Medium
ēθ fo et ēθ fo et ēθ fo et

1 Mellinger 1.93 1.4 0.11 1.11 0.5 0.14 0.78 1.1 0.04
2 Mellinger (no memory) 3.68 6.2 0.20 1.23 0.8 0.16 5.53 5.5 0.07
3 Mellinger (uniform) 3.17 6.3 0.19 1.12 0.7 0.19 5.29 5.4 0.32
4 NN CF 1.53 0.9 0.19 1.13 1.0 0.21 2.99 1.0 0.47
5 NN CF (w/o delay) 1.90 1.0 0.21 0.93 0.8 0.21 2.25 1.0 0.42
6 NN CF 10 % random 1.61 1.1 0.30 1.34 1.0 0.22 3.51 1.0 0.47
7 NN CF 20 % random 1.53 1.1 0.20 1.12 1.0 0.21 1.67 0.9 0.33
8 NN CF 30 % random 2.65 1.4 0.23 4.33 1.0 0.24 1.96 1.0 0.33
9 NN CF random t2w (1.5 – 2.5) 1.68 1.1 0.23 1.44 1.0 0.33 1.22 0.9 0.39
10 NN CF random t2w (1.8 – 2.5) 2.32 1.9 0.21 1.91 1.0 0.26 1.70 1.8 0.49
11 NN Fully random (t2w 1.5 – 2.5) 1.70 1.0 0.25 1.63 0.9 0.24 1.61 0.9 0.35

tracking controller specifically tuned for the Crazyflie.

C. Sim-to-Multi-Real: Learning without Model

We now investigate how well a single policy works across
different quadrotor platforms. In all cases, we quantify the
hover quality as well as trajectory tracking using the metrics
defined in Section V-E. For the medium quadrotor, we
artificially limit the output RPM to 60 % of its maximum, to
compensate for its higher thrust-to-weight ratio4. The results
are shown in Table IV.

We use three different baselines to provide an estimate on
achievable performance. The first two baselines are identical
to the Mellinger baselines in Section VI-B. A third baseline
is used to test transferability, in which we find a uniform
set of attitude and position gains for the Mellinger controller
without any memory, but keep the manually tuned values for
gravity compensation in place (“Mellinger (uniform)”). This
baseline provides an estimate on how well a single policy
might work across different quadrotors.

We compare these “Mellinger” baselines to different net-
works, including our baseline network (BN), BN when motor
delays ignored, and various policies that use randomized
models during training. We make the following observations:
1) All our policies show somewhat comparable performance

to the Mellinger controllers on all platforms. There are no
significant oscillations for the learned policies, whereas
there are significant oscillations for some of the Mellinger
baselines (see rows 2 and 3).

2) Unsurprisingly, the network specifically trained for the
Crazyflie works best on this platform. It also performs
very well on the small quadrotor, but shows large position
errors on the medium quadrotor (row 4). Surprisingly,
modeling the motor delay during training has a very small
impact on tracking performance (row 5).

3) Randomization around a set of nominal values can im-
prove the performance, but it works best if the random-
ization is fairly small (20 % in our case), see rows 6 –
8. This improvement is not caused just by randomizing
different thrust-to-weight ratios (rows 9 and 10).

4) Full randomization shows more consistent results over all
platforms, but performs not as well as other policies (row
11).

4Among all parameters the rough value of the thrust-to-weight ratio is
relatively easy to estimate.

D. Control Policy Robustness and Recovery

We perform recovery robustness tests by making repetitive
throws of the quadrotors in the air. We use the baseline neural
network that was trained for the Crazyflie specifically on
all platforms. In these tests we do not perform comparison
with the “Mellinger” controller since it could not recover
properly from deviations from its goal position larger than
0.5 m. This controller is mainly tuned for trajectory tracking
with closely located points provided as full state vectors.
Our policy, on the other hand, shows a substantial level of
robustness on all three platforms. It performs especially well
on the Crazyflie platform recovering from 80 % of all throws
and up to 100 % throws with moderate attitude changes (≤
35◦)5. Interestingly, it can even recover in more than half of
scenarios after hitting the ground.

The policy also shows substantial level of robustness
on other quadrotors. Similar to the Crazyflie platform, the
throws with moderate attitude change do not cause serious
problems to either of the platforms and they recover in
≥ 90 % of trials. Stronger attitude disturbances are signif-
icantly harder and we observe roughly 50 % recovery rate
on average.

More mild tests, like light pushes and pulling from the
hover state, do not cause failures. One observation that we
make is that all policies learned some preference on yaw
orientation that it tries to stabilize although we did not
provide any yaw-related costs apart from the cost on angular
velocities. We hypothesize that the policy seeks a “home”
yaw angle because it becomes unnecessary to reason about
symmetry of rotation in the xy plane if the quadrotor is
always oriented in the same direction.

Another surprising observation is that the control policies
can deal with much higher initial velocities than those en-
countered in training (≤ 1 m/s). In practice, initial velocities
in our tests often exceed 3 m/s (see Fig. 4 for an example
of a recovery trajectory). The policies can take-off from
the ground, thus overcoming the near-ground airflow effects.
They can also fly from distances far exceeding the boundaries
of the position initialization box observed in the training. All
these factors demonstrate strong generalization of the learned
policy to the out-of-distribution states. Our supplemental
video shows examples on the achieved robustness with all

5Computed as a 95-th percentile in our experiments.

X Y ZBody axes:

Initial position &
orientation

Fig. 4. An example of a recovery trajectory from a random throw with an
initial linear velocity of approximately 4 m/s.

three platforms.

VII. CONCLUSIONS AND FUTURE WORK
In this work, we demonstrate how a single neural network

policy trained completely in simulation for a task of recovery
from harsh initial conditions can generalize to multiple
quadrotor platforms with unknown dynamics parameters.
We present a thorough study on the importance of many
modeled quadrotor dynamics phenomena for the task of sim-
to-real transfer. We investigate a popular domain adaptation
technique, called domain randomization, for the purpose of
reducing the simulation to reality gap.

Our experiments show the following interesting results.
First, it is possible to transfer a single policy trained on
a specific quadrotor to multiple real platforms, which sig-
nificantly vary in sizes and inertial parameters. Second, the
transferred policy is capable of generalizing to many out-of-
distribution states, including much higher initial velocities
and much more distant initial positions. Third, even policies
that are trained when ignoring real physical effects (such as
motor delays or sensor noise) work robustly on real systems.
Modeling such effects explicitly during training improves
flight performance slightly. Fourth, the transferred policies
show high robustness to harsh initial conditions better than
the hand-tuned nonlinear controller we used as a baseline.
Fifth, domain randomization is capable of improving results,
but the extent of the improvement is moderate in compar-
ison to the baseline performance trained without parameter
perturbations.

Our findings open exciting directions for future work. We
are planning to explore how we can incorporate a limited
number of samples collected from real systems with our
policies to improve the trajectory tracking performance of
our policy without manual tuning. We are also planning to
investigate if different networks are able to deal better with
different thrust-to-weights ratios. Finally, we want to explore
if we can increase robustness of the policy by training with
different failure cases such as broken motors.

REFERENCES

[1] J. Tobin, R. Fong, A. Ray, et al., “Domain randomization for
transferring deep neural networks from simulation to the real world,”
in IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS),
2017.

[2] F. Sadeghi and S. Levine, “CAD2RL: real single-image flight without
a single real image,” in Robotics: Science and Systems (RSS), 2017.

[3] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage
task,” in Conference on Robot Learning (CoRL), 2017.

[4] J. Tan, T. Zhang, E. Coumans, et al., “Sim-to-real: Learning agile
locomotion for quadruped robots,” in Robotics: Science and Systems
(RSS), 2018.

[5] G. Brockman, V. Cheung, L. Pettersson, et al., “OpenAI gym,”
CoRR, vol. abs/1606.01540, 2016.

[6] K. Lowrey, S. Kolev, J. Dao, A. Rajeswaran, and E. Todorov, “Rein-
forcement learning for non-prehensile manipulation: Transfer from
simulation to physical system,” in IEEE Intl Conf. on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR),
2018.

[7] R. Antonova, S. Cruciani, C. Smith, and D. Kragic, “Reinforcement
learning for pivoting task,” CoRR, vol. abs/1703.00472, 2017.

[8] J. Förster, “System identification of the crazyflie 2.0 nano quadro-
copter,” BA Thesis, ETH Zurich, 2015.

[9] P. F. Christiano, Z. Shah, I. Mordatch, et al., “Transfer from
simulation to real world through learning deep inverse dynamics
model,” CoRR, vol. abs/1610.03518, 2016.

[10] Y. Chebotar, A. Handa, V. Makoviychuk, et al., “Closing the sim-
to-real loop: Adapting simulation randomization with real world
experience,” in IEEE Intl Conf. on Robotics and Automation (ICRA),
2019.

[11] S. Zhu, A. Kimmel, K. E. Bekris, and A. Boularias, “Fast model
identification via physics engines for data-efficient policy search,” in
Intl Joint Conf. on Artificial Intelligence (IJCAI), 2018.

[12] J. Tan, Z. Xie, B. Boots, and C. K. Liu, “Simulation-based design
of dynamic controllers for humanoid balancing,” in IEEE/RSJ Intl
Conf. on Intelligent Robots and Systems (IROS), 2016.

[13] J. Tremblay, T. To, A. Molchanov, et al., “Synthetically trained
neural networks for learning human-readable plans from real-world
demonstrations,” in IEEE Intl Conf. on Robotics and Automation
(ICRA), 2018.

[14] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-
to-real transfer of robotic control with dynamics randomization,” in
IEEE Intl Conf. on Robotics and Automation (ICRA), 2018.

[15] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-CIO: Full-body
dynamic motion planning that transfers to physical humanoids,” in
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), 2015.

[16] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, “General-
ization through simulation: Integrating simulated and real data into
deep reinforcement learning for vision-based autonomous flight,” in
IEEE Intl Conf. on Robotics and Automation (ICRA), 2019.

[17] W. Koch, R. Mancuso, and A. Bestavros, “Neuroflight: Next gen-
eration flight control firmware,” CoRR, vol. abs/1901.06553, 2019.
arXiv: 1901.06553.

[18] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadro-
tor with reinforcement learning,” IEEE Robotics and Automation
Letters (RA-L), vol. 2, no. 4, 2017.

[19] P. Martin and E. Salaün, “The true role of accelerometer feedback in
quadrotor control,” in IEEE Intl Conf. on Robotics and Automation
(ICRA), 2010.

[20] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS—a
modular gazebo MAV simulator framework,” in Robot Operating
System (ROS): The Complete Reference (Volume 1). 2016.

[21] N. J. Higham, “Matrix nearness problems and applications,” in
Applications of Matrix Theory, M. J. C. Gover and S. Barnett, Eds.,
Oxford University Press, 1989.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[23] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
in Intl Conf. on Machine Learning (ICML), 2016.

[24] J. A. Preiss*, W. Hönig*, G. S. Sukhatme, and N. Ayanian,
“Crazyswarm: A large nano-quadcopter swarm,” in IEEE Intl Conf.
on Robotics and Automation (ICRA), 2017.

http://arxiv.org/abs/1901.06553

	INTRODUCTION
	RELATED WORK
	Problem Statement
	Dynamics Simulation
	Rigid Body Dynamics for Quadrotors
	Normalized Motor Thrust Input
	Simulation of Non-Ideal Motors
	Observation Model
	Numerical Methods

	Learning & Verification
	Randomization
	Policy Representation
	Policy Learning
	Sim-to-Sim Verification
	Sim-to-Real Verification

	Experiments
	Ablation Analysis on Cost Components
	Sim-to-Real: Learning with Estimated Model
	Sim-to-Multi-Real: Learning without Model
	Control Policy Robustness and Recovery

	CONCLUSIONS AND FUTURE WORK

