
Scalable Task and Motion Planning for Multi-Robot Systems in
Obstacle-Rich Environments

Doctoral Consortium

Wolfgang Hönig
University of Southern California

whoenig@usc.edu

ABSTRACT
Motion planning problems have been studied in both the artificial
intelligence (AI) and robotics communities. AI solvers can compute
plans for hundreds of simple agents in minutes with suboptimality
guarantees, while robotics solutions typically include richer kino-
dynamic models during planning, but are very slow when many
robots and obstacles are taken into account.

We combine the advantages of the two methods by using a two-
step approach. First, we use and extend AI solvers for a simplified
coordination problem. The output is a discrete plan that cannot
be executed on real robots. Second, we apply a computationally
efficient post-processing step that creates a continuous plan, tak-
ing kinodynamic constraints into account. We show examples for
ground robots in a warehouse domain and quadrotors that are
tasked with formation change.

ACM Reference Format:
Wolfgang Hönig. 2018. Scalable Task and Motion Planning for Multi-Robot
Systems in Obstacle-Rich Environments. In Proc. of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
Coordinating many collaborative robots is very useful for search-
and-rescue, mining, entertainment, and warehouse automation. In
many of those scenarios, robots have to move in tight spaces filled
with obstacles to reach their objectives. In artificial intelligence,
path-finding planners find solutions quickly but make simplifying
assumptions: both time and space are discretized and the agents are
assumed to be point robots that can move in perfect synchroniza-
tion on a graph. The robotics community has developed solutions
that use detailed models of the robots including kinodynamic con-
straints. Combined with robust controllers, this ensures that the
computed plans can likely be executed on real robots in practice.
However, such planning is computationally expensive and often
only works with a team of a few robots.

In this work, we combine the advantages of the two approaches.
We develop a scalable algorithm that comes with theoretical guar-
antees and apply it to real robot systems. Our approach is based on
planners from the AI community (and novel extensions thereof) and
uses post-processing steps to allow safe execution on real robots.
We leverage the fact that AI solvers solve the coordination problem
on an abstract level, creating a partial order between the robots.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Long exposure of 32 Crazyflie nano-quadrotors fly-
ing through an obstacle-rich environment.

We can refine such an abstract solution to include robot-specific
properties. The post-processing step depends on the type of robots,
and we provide examples for ground robots and aerial vehicles.

2 AGENTS
We first introduce Multi-Agent Path-Finding (MAPF) and later ex-
tend it to account for the physical extent of robots. The environment
is represented in a search graph GE = (VE , EE ) with unit-length
edges. The set of agents is {1, . . . ,N }. For agent j let u jt be the
vertex that is occupied at timestep t , s j = u

j
0 be the given start

vertex, and дj the goal vertex. The discrete schedule for agent j
is p j = [u j0, . . . ,u

j
T j ,u

j
T j+1, . . .]. The goal for a MAPF solver is to

find a discrete schedule for each agent, such that: 1. Every action is
either a move action along an edge or a wait action; 2. Agent j re-
mains at a vertex дj after timestepT j ; 3. Two agents do not occupy
the same vertex at the same timestep; and 4. Two agents do not
traverse the same edge in opposite directions at the same timestep.
An optimal solution might minimize the makespan (maxj T j ) or
the total time (

∑
j T

j ). Solving MAPF optimally is NP-hard, but
w-suboptimal solvers exist that can solve problem instances with
hundreds of agents quickly in practice.

The existing MAPF formulations assume that two agents can
safely traverse two different edges simultaneously. This is not true
in general roadmaps that might be created with algorithms such as
PRM*, because edges might be arbitrarily close to each other. We
introduce MAPF with generalized conflicts (MAPF/C). We operate
on the search graph GE with additional conflict sets for generalized
vertex-vertex (conVV ), edge-edge (conEE), and edge-vertex (conEV )
conflicts. A discrete schedule has to fulfill the following additional
properties: 5. Agents obey inter-agent constraints when stationary
(conVV ); 6. Agents obey inter-agent constraints while traversing an
edge (conEE); and 7. Agents obey inter-agent constraints between
stationary and traversing agents (conEV ).

We develop solvers for MAPF/C based on solvers for MAPF that
can find solutions for the labeled and unlabeled variants [2].



3 GROUND ROBOTS
We now consider ground robots, such as differential drive robots,
that operate in warehouse environments. We demonstrate our ap-
proach with a simple example of two robots in a narrow corridor
of a grid-world, see Fig. 2 (top). The two robots have different max-
imum speed limits and edge (C,D) has a minimum speed limit.
Robot 1 must pass Robot 2 to reach its goal location, which requires
Robot 2 to move into an alcove temporarily, no matter what the
speed limits are. We can thus use a discrete solver from AI to dis-
cover such critical intermediate configurations and then use our
post-processing step MAPF-POST to create a continuous schedule.

MAPF-POST uses a Temporal Plan Graph (TPG) as data structure.
A TPG is a directed acyclic graph GT PG = (VT PG , ET PG ). Each
vertexv represents an event, which corresponds to a robot entering
a location. Each edge (u,v ) is a temporal precedence between events
u andv indicating that eventumust be scheduled no later than event
v . We can construct a TPG given a discrete schedule in polynomial
time. We use two different kinds of temporal precedences: Type 1
edges enforce that a robot enters locations in the order given by its
discrete schedule (black edges in Fig. 2) and Type 2 edges enforce
the order in which two different robots enter the same location in
the discrete schedules (colored edges in Fig. 2).

The basic TPG does not provide any safety distance between
robots. We can add additional vertices (called safety markers) to
the TPG to provide a guaranteed safety distance between robots.
The safety markers correspond to new locations and can be added
given a user-specified safety distance δ . The augmented TPG can
be constructed in polynomial time and requires more vertices and
edges the smaller δ gets. The safety markers are the unlabeled
vertices in Fig. 2 and were created using δ = 0.25m (all edges in
the environment are 1m long).

We can now transform the TPG into a Simple Temporal Net-
work (STN), where each edge e = (u,v ) is annotated with bounds
[LB (e ),UB (e )] indicating that event u must be scheduled between
LB (e ) and UB (e ) time units before event v . This annotation can
directly take minimum and maximum speed limits of the robots
and edges into account. A solution that minimizes makespan to the
STN can be computed in polynomial time and assigns a continuous
arrival time to each location. The STN can be re-solved quickly
online to account for execution deviations.

We showed thatMAPF-POST guarantees the user-specified safety
distance and provided experimental results with a group of robots [1].

4 AERIAL VEHICLES
We now consider the formation change problem for a team of
quadrotors in obstacle-rich environments. While it is possible to
use MAPF-POST for such a problem, the quadrotors would need
to stop at each vertex and could not fly in close vertical proximity
because MAPF-POST ignores the so-called downwash effect.

Quadrotors generate a large, fast-moving volume of air under-
neath their rotors called downwash. The downwash force is large
enough to cause a catastrophic loss of stability when one rotor-
craft flies underneath another. We model downwash constraints
as inter-robot collision constraints by treating each robot as an
axis-aligned ellipsoid. Our approach first discretizes the problem
and constructs a MAPF/C instance. The discrete schedule is used as

A

s1

B

s2

C D

g2

E

g1

F

A1
0 B1

1 C1
2 D1

3 E1
4

B2
0 C2

1 F 2
2 C2

3 D2
4

X0 XF

[1,∞]
[3,∞]

[1,∞]
[3,∞] [3, 24]

[1, 8]
[3,∞]

[1,∞]

[12,∞]
[4,∞]

[12,∞]
[4,∞] [4,∞]

[12,∞]
[4, 8]

[12, 24]

[0
,∞

]

[0
,∞

]

[0
,∞

]

[0
,∞

] [0,∞
]

[0,∞
]

[0,∞
]

[0,∞
]

[0,
0]

[0, 0]

[0,∞
]

[0,
∞]

Figure 2: MAPF-POST Example.

input to a trajectory optimization problem that iteratively creates
smooth trajectories.

The discrete portion consists of three parts. First, we generate a
roadmap given a map of the environment, the shape of the robots,
and a set of start and goal locations, using the SPARS algorithm. Sec-
ond, we annotate the roadmap with vertex-vertex (conVV ) conflicts
(pairwise collision checking between ellipsoids placed at vertices),
edge-edge (conEE) conflicts (pairwise collision checking between
swept ellipsoids along edges), and edge-vertex (conEV ) conflicts
(collision checking between swept ellipsoid along edge and ellip-
soid at vertex). Third, we use the annotated roadmap as input for
MAPF/C and find a collision-free discrete schedule for all robots.

The trajectory optimization first finds safe corridors within the
free space for each robot. For each timestep k and robot i we find the
convex polyhedron Pik by intersecting the half-spaces that separate
the current robot from all other robots and the half spaces that sep-
arate the current robot from all obstacles. The union ∪kPik defines
a safe corridor for robot i . We base the trajectories on Bézier curves,
which are guaranteed to lie in the convex hull of all control points.
During optimization, we find a Bézier curve per timestep k and ro-
bot i and constrain its control points to be within Pik , guaranteeing
that the resulting curve will be within Pik also. The optimization
is independent of the other robots and can be executed in parallel.
We can iteratively repeat the optimization to improve the quality
of the trajectories. In the last step, we stretch the trajectories such
that all dynamic limits (e.g., maximum acceleration) are fulfilled.

We provide simulations with up to 200 quadrotors and execute
the trajectories on 32 real quadrotors [2], see Fig. 1.

5 CONCLUSIONS
We have developed a method that can compute trajectories for hun-
dreds of robots in obstacle-rich environments within minutes. Our
approach combines ideas from artificial intelligence and robotics.
We use AI planners with simplistic agent models, perform a compu-
tationally efficient post-processing step, and execute the resulting
plan on physical robots with safety guarantees. For ground robots,
our post-processing step is MAPF-POST, an algorithm based on
simple temporal networks that can take into account simple kine-
matic constraints (such as speed limits) and a safety distance. The
post-processing step for UAVs is based on trajectory optimization
for each robot within a safe corridor. We demonstrate the approach
in simulation and on up to 8 ground robots and 32 UAVs.

In the future we plan to investigate robust plan execution for
persistent operation even when the environment or tasks change.



REFERENCES
[1] Wolfgang Hönig, T. K. Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora

Ayanian, and Sven Koenig. 2018. Path Finding for Multi-Robot Systems with
Kinematic Constraints. Journal of Artificial Intelligence Research (JAIR) (2018).
Accepted.

[2] Wolfgang Hönig, James A. Preiss, T. K. Satish Kumar, Gaurav S. Sukhatme,
and Nora Ayanian. 2018. Trajectory Planning for Quadrotor Swarms. IEEE
Transactions on Robotics, Special Issue on Aerial Swarm Robotics (2018). Accepted.


	Abstract
	1 Introduction
	2 Agents
	3 Ground Robots
	4 Aerial Vehicles
	5 Conclusions
	References

