
Flying Multiple UAVs Using ROS

Wolfgang Hönig and Nora Ayanian

Department of Computer Science,
University of Southern California, Los Angeles, CA, USA

whoenig@usc.edu

ayanian@usc.edu

http://act.usc.edu

Abstract. This tutorial chapter will teach readers how to use ROS to
fly a small quadcopter both individually and as a group. We will discuss
the hardware platform, the Bitcraze Crazyflie 2.0, which is well suited for
swarm robotics due to its small size and weight. After first introducing
the crazyflie_ros stack and its use on an individual robot, we will ex-
tend scenarios of hovering and waypoint following from a single robot to
the more complex multi-UAV case. Readers will gain insight into physical
challenges, such as radio interference, and how to solve them in practice.
Ultimately, this chapter will prepare readers not only to use the stack
as-is, but also to extend it or to develop their own innovations on other
robot platforms.

Keywords: ROS, UAV, Multi-Robot-System, Crazyflie, Swarm

1 Introduction

Unmanned aerial vehicles (UAVs) such as AscTec Pelican, Parrot AR.Drone,
and Erle-Copter have a long tradition of being controlled with ROS. As a result,
there are many ROS packages devoted to controlling such UAVs as individuals1.
However, using multiple UAVs creates entirely new challenges that such packages
cannot address, including, but not limited to, the physical space required to
operate the robots, the interference of sensors and network communication, and
safety requirements.

Multiple UAVs have been used in recent research [1,2,3,4,5], but such research
can be overly complicated and tedious due to the lack of tutorials and books. In
fact, even with packages that can support multiple UAVs, documentation focuses
on the single UAV case, not considering the challenges that occur once multiple
UAVs are used. Research publications often skip implementation details, making
it difficult to replicate the results. Papers about specialized setups exist [6,7],
but rely on expensive or commercially unavailable solutions.

This chapter will attempt to fill this gap in documentation. In particular, we
try to provide a step-by-step guide on how to reproduce results we presented

1 e.g. http://wiki.ros.org/ardrone_autonomy, http://wiki.ros.org/mavros,
wiki.ros.org/asctec_mav_framework

http://act.usc.edu
http://wiki.ros.org/ardrone_autonomy
http://wiki.ros.org/mavros
wiki.ros.org/asctec_mav_framework

2 Flying Multiple UAVs Using ROS

in an earlier research paper [3], which used up to six UAVs2. We focus on a
small quadcopter — the Bitcraze Crazyflie 2.0 — and how to use it with the
crazyflie_ros stack, particularly as part of a group of 2 or more UAVs. We
will assume that an external position tracking system, such as a motion capture
system, is available because the Crazyflie is not able to localize itself with just
onboard sensing. We will discuss the physical setup and how to support a single
human pilot. Each step will start with the single UAV case and then extend to
the more challenging multi-UAV case.

We begin with an introduction to the target platform, including the software
setup of the vendor’s software and the crazyflie_ros stack. We then show tele-
operation of multiple Crazyflies using joysticks. The usage of a motion capture
system allows us to autonomously hover multiple Crazyflies. We then extend
this to multiple UAVs following waypoints. The chapter will also contain im-
portant insights into the crazyflie_ros stack, allowing the user to understand
the design in-depth. This can be helpful for users interested in implementing
other multi-UAV projects using different hardware or adding extensions to the
existing stack.

Everything discussed here has been tested on Ubuntu 14.04 using ROS In-
digo. The stack and discussed software also work with ROS Jade (Ubuntu 14.04)
and ROS Kinetic (Ubuntu 16.04).

2 Target Platform

Fig. 1. Our target platform Bitcraze Crazyflie 2.0 quadcopter (left), which can be
controlled from a PC using a custom USB dongle called Crazyradio PA (right). Image
credit: Bitcraze AB.

As our target platform we use the Bitcraze Crazyflie 2.0 platform, an open-
source, open-hardware nano quadcopter that targets hobbyists and researchers
alike. Its small size (92 mm diagonal rotor-to-rotor) and weight (29 g) make it
ideal for indoor swarming applications. Additionally, its size allows users to op-
erate the UAVs safely even with humans or other robots around. The low inertia
causes only few parts to break after a crash — the authors had several crashes

2 Video available at http://youtu.be/px9iHkA0nOI

http://youtu.be/px9iHkA0nOI

Flying Multiple UAVs Using ROS 3

from a height of 3 m to a concrete floor with damage only to cheaply replaceable
plastic parts. A Crazyflie can communicate with a phone or PC using Blue-
Tooth. Additionally, a custom USB dongle called Crazyradio PA, or Crazyradio
for short, allows lower latency communication. The Crazyflie 2.0 and Crazyradio
PA are shown in Fig. 1.

nRF51
on/off
button

STM32

MPU-9250
LPS25H

Motor
driver

EEPROMExpansion port

Power Management
Communication

Accelerometer
Gyroscope
Magnetometer

Pressure
Sensor

State Estimation
Flight Control
Telemetry

Setpoint (Thrust and Attitude Angles)
Parameters

Telemetry

syslink

Power: Always On Power: Switched by nRF51

I2C

I2C

PWMUART

PC or
Phone

2.4 GHz

I2C
I2C,
PWM,
SPI

OW

Fig. 2. Components and architecture of the Crazyflie 2.0 quadcopter. Based on images
by Bitcraze AB.

A block diagram of the Crazyflie’s architecture is shown in Fig 2. The com-
munication system is used to send the setpoint, consisting of thrust and attitude,
tweak internal parameters, and stream telemetry data, such as sensor readings.
It is also possible to update the onboard software wirelessly. The Crazyflie has
a 9-axis inertial measurement unit (IMU) onboard, consisting of gyroscope, ac-
celerometer, and magnetometer. Moreover, a pressure sensor can be used to
estimate the height. Most of the processing is done on the main microcontroller
(STM32). It runs FreeRTOS as its operating system and state estimation and at-
titude control are executed at 250 Hz. A second microcontroller (nRF51) is used
for the wireless communication and as a power manager. The two microcon-
trollers can exchange data over the syslink, which is a protocol using UART
as a physical interface. An extension port permits the addition of additional
hardware. The official extensions include an inductive charger, LED headlights,
and buzzer. Finally, it is possible to use the platform on a bigger frame if higher
payload capabilities are desired. Extensions are called “decks” and are also used

4 Flying Multiple UAVs Using ROS

by the community to add additional capabilities3. The schematics as well as all
firmwares are publicly available4. The technical specifications are as follows:

– STM32F405: main microcontroller, used for state-estimation, control, and
handling of extensions. We will call this STM32.
(Cortex-M4, 168 MHz, 192 kB SRAM, 1 MB flash).

– nRF51822: radio and power management microcontroller. We will call this
nRF51.
(Cortex-M0, 32 MHz, 16 kB SRAM, 128 kB flash).

– MPU-9250: 9-axis inertial measurement unit.
– LPS25H: pressure sensor.
– 8 kB EEPROM.
– uUSB: charging and wired communication.
– Expansion port (I2C, UART, SPI, GPIO).
– Debug port for STM32. An optional debug-kit can be used to convert to a

standard JTAG-connector and to debug the nRF51 as well.

The onboard sensors are sufficient to stabilize the attitude, but not the po-
sition. In particular, external feedback is required to fly to predefined positions.
By default, this is the human who teleoperates the quadcopter either using a joy-
stick connected to a PC, or a phone. In this chapter, we will use a motion-capture
system for fully autonomous flights.

The vendor provides an SDK written in Python which runs on Windows,
Linux, and Mac. It can be used to teleoperate a single Crazyflie using a joystick,
to plot sensor data in real-time, and to write custom applications. We will use
ROS in the remainder of this chapter to control the Crazyflie; however, ROS is
only used on the PC controlling one or more Crazyflies. The ROS driver sends
the data to the different quadcopters using the protocol defined in the Crazyflie
firmware.

The Crazyflie has been featured in a number of research papers. The math-
ematical model and system identification of important parameters, such as the
inertia matrix, have been discussed in [8] and [9]. An updated list with applica-
tions can be found on the official webpage5.

3 Setup

In this section we will describe how to set up the Crazyflie software. We cover
both the official Python SDK and how to install the crazyflie_ros stack. The
first is useful to reconfigure the Crazyflie as well as for troubleshooting, while
the later will allow us to use multiple Crazyflies with ROS.

We assume a PC with Ubuntu 14.04 as operating system, which has ROS
Indigo (desktop-full) installed6. It is better to install Ubuntu directly on a PC

3 https://www.hackster.io/bitcraze/products/crazyflie-2-0
4 https://github.com/bitcraze/
5 https://www.bitcraze.io/research/
6 http://wiki.ros.org/indigo/Installation/Ubuntu

https://www.hackster.io/bitcraze/products/crazyflie-2-0
https://github.com/bitcraze/
https://www.bitcraze.io/research/
http://wiki.ros.org/indigo/Installation/Ubuntu

Flying Multiple UAVs Using ROS 5

rather than using a virtual machine for two reasons: First, you will be using
graphical tools, such as rviz, which rely on OpenGL and therefore do not per-
form as well on a virtual machine as when natively installed. Second, the commu-
nication using the Crazyradio would have additional latency in a virtual machine
since the USB signals would go through the host system first. This might cause
less stable control.

In particular, we will follow the following steps:

1. Configure the PC such that the Crazyradio will work for any user.
2. Install the official software package to test the Crazyflie.
3. Update Crazyflie’s onboard software to the latest version to ensure that it

will work with the ROS package.
4. Install the crazyflie_ros package and run a first simple connection test.

The later sections in this chapter assume that everything is set up as outlined
here to perform higher-level tasks.

3.1 Setting PC Permissions

By default, the Crazyradio will only work for a user with superuser rights when
plugged in to a PC. This is not only a security concern but also makes it harder
to use with ROS. In order to use it without sudo, we first add a group (plugdev)
and then add ourselves as a member of that group:

$ sudo groupadd plugdev

$ sudo usermod -a -G plugdev $USER

Now, we create a udev-rule, setting the permission such that anyone who is
a member of our newly created group can access the Crazyradio. We create a
new rules file using gedit:

$ sudo gedit /etc/udev/rules.d/99-crazyradio.rules

and add the following text to it:

1 # Crazyradio (normal operation)

2 SUBSYSTEM=="usb", ATTRS{idVendor}=="1915",

ATTRS{idProduct}=="7777", MODE="0664", GROUP="plugdev"

3 # Bootloader

4 SUBSYSTEM=="usb", ATTRS{idVendor}=="1915",

ATTRS{idProduct}=="0101", MODE="0664", GROUP="plugdev"

The second entry is useful for firmware updates of the Crazyradio.
In order to use the Crazyflie when directly connected via USB, you need

to create another file named 99-crazyflie.rules in the same folder, with the
following content:

6 Flying Multiple UAVs Using ROS

1 SUBSYSTEM=="usb", ATTRS{idVendor}=="0483",

ATTRS{idProduct}=="5740", MODE="0664", GROUP="plugdev"

Finally, we reload the udev-rules:

$ sudo udevadm control --reload-rules

$ sudo udevadm trigger

You will need to log out and log in again in order to be a member of the
plugdev group. You can then plug in your Crazyradio (and follow the instruc-
tions in the next section to actually use it).

3.2 Bitcraze Crazyflie PC Client

The Bitcraze SDK is composed of two parts. The first is crazyflie-lib-python,
which is a Python library to control the Crazyflie without any graphical user
interface. The second is crazyflie-client-python, which makes use of that
library and adds a graphical user interface.

We start by installing the required dependencies:

$ sudo apt-get install git python3 python3-pip python3-pyqt4

python3-numpy python3-zmq

$ sudo pip3 install pyusb==1.0.0b2

$ sudo pip3 install pyqtgraph appdirs

To install crazyflie-lib-python, use the following commands:

$ mkdir ~/crazyflie

$ cd ~/crazyflie

$ git clone https://github.com/bitcraze/crazyflie-lib-python.git

$ cd crazyflie-lib-python

$ pip3 install --user -e .

Here, the Python package manager pip is used to install the library only for
the current user. The library uses Python 3. In contrast, ROS Indigo, Jade, and
Kinetic use Python 2.

Similarly, crazyflie-client-python can be installed using the following
commands:

$ cd ~/crazyflie

$ git clone https://github.com/bitcraze/crazyflie-clients-python.git

$ cd crazyflie-clients-python

$ pip3 install --user -e .

To start the client, execute the following:

Flying Multiple UAVs Using ROS 7

$ cd ~/crazyflie/crazyflie-clients-python

$ python3 bin/cfclient

You should see the graphical user interface, as shown in Fig. 3.

Fig. 3. Screenshot of the Bitcraze Crazyflie PC Client

Versions Might Change

Since the Crazyflie software is under active development, the instal-
lation procedure and required dependencies might change in the fu-
ture. You can use the exact same versions as used in the chapter by
using the following commands after git clone. Use the following for
crazyflie-lib-python

$ git checkout a0397675376a57adf4e7c911f43df885a45690d1

and use the following for crazyflie-clients-python:

$ git checkout 2dff614df756f1e814538fbe78fe7929779a9846

8 Flying Multiple UAVs Using ROS

If you want to use the latest version please follow the instructions pro-
vided in the README.md file in the respective repositories.

3.3 Firmware

Everything described in this chapter works with the Crazyflie’s default firmware.
You can obtain the latest compiled firmware from the repository7 — this chapter
was tested with the 2016.02 release. Make sure that you update the firmware for
both STM32 and nRF51 chips by downloading the zip-file. Execute the following
steps to update both firmwares:

1. Start the Bitcraze Crazyflie PC Client.
2. In the menu select “Connect”/“Bootloader.”
3. Turn your Crazyflie off by pressing the power button. Turn it back on by

pressing the power button for 3 seconds. The blue tail lights should start
blinking: The Crazyflie is now waiting for a new firmware.

4. Click “Initiate bootloader cold boot.” The status should switch to “Con-
nected to bootloader.”

5. Select the downloaded crazyflie-2016.02.zip and press “Program.” Click
the “Restart in firmware mode” button after it is finished.

If you prefer compiling the firmware yourself, please follow the instructions
in the respective repositories8.

3.4 Crazyflie ROS Stack

The crazyflie_ros stack contains the driver, a position controller, and various
examples. We will explore the different possibilities later in this chapter and
concentrate on the initial setup first.

We first create a new ROS workspace:

$ mkdir -p ~/crazyflie_ws/src

$ cd ~/crazyflie_ws/src

$ catkin_init_workspace

Next, we add the required packages to the workspace and build them:

$ git clone https://github.com/whoenig/crazyflie_ros.git

$ cd ~/crazyflie_ws

$ catkin_make

In order to use your workspace add the following line to your ~/.bashrc:

7 https://github.com/bitcraze/crazyflie-release/releases
8 https://github.com/bitcraze/crazyflie-firmware,
https://github.com/bitcraze/crazyflie2-nrf-firmware

https://github.com/bitcraze/crazyflie-release/releases
https://github.com/bitcraze/crazyflie-firmware
https://github.com/bitcraze/crazyflie2-nrf-firmware

Flying Multiple UAVs Using ROS 9

$ source ~/crazyflie_ws/devel/setup.bash

This will ensure that all ROS related commands will find the packages in
all terminals. To update your current terminal window, use source ~/.bashrc,
which will reload the file.

You can test your setup by typing:

$ rosrun crazyflie_tools scan

This should print the uniform-resource-identifier (URI) of any Crazyflie
found in range. For example, the output might look like this:

Configured Dongle with version 0.54

radio://0/100/2M

In this case, the URI of your Crazyflie is radio://0/100/2M. Each URI has
several components. Here, the Crazyradio is used (radio). Since you might have
multiple radios in use, you can specify a zero-based index on the device to use
(0). The next number (100) specifies the channel, which is a number between 0
and 125. Finally, the datarate (2M) (one of 250K, 1M, 2M) specifies the speed
to use in bits per second. There is an optional address as well, which we will
discuss in section 5.1.

Versions

As before, the instructions might be different in future versions. Use the
following to get the exact same version of the crazyflie_ros stack:

$ git checkout 34beecd2a8d7ab02378bcdfcb9adf5a7a0eb50ea

Install the following additional dependency in order to use the teleoperation:

$ sudo apt-get install ros-indigo-hector-quadrotor-teleop

If you are using ROS Jade or Kinetic, you will need to add the package to
your workspace manually.

4 Teleoperation of A Single Quadcopter

In this section we will use ROS to control a single Crazyflie using a joystick.
Moreover, we will gain access to the internal sensors and show how to visualize
the data using rviz and rqt_plot.

This is a useful first step to understand the cmd_vel interface of the crazy-

flie ros stack. Later, we will build on this knowledge to let the Crazyflie fly
autonomously. Furthermore, teleoperation is useful for debugging. For example,
it can be used to verify that there is no mechanical hardware defect.

10 Flying Multiple UAVs Using ROS

In the first subsection, we assume that you have access to a specific joystick,
the Microsoft XBox360 controller. We show how to connect to the Crazyflie using
ROS and how to eventually fly it manually. The second subsection relaxes this
assumption by discussing the required steps needed to add support for another
joystick.

4.1 Using an XBox360 Controller

For this example, we assume that you have an Xbox360 controller plugged into
your machine. We will show how to use different joysticks later in this section.
Use the following command to run the teleoperation example:

$ roslaunch crazyflie_demo teleop_xbox360.launch uri:=radio://0/100/2M

Make sure that you adjust the URI based on your Crazyflie.
The launch file teleop_xbox360.launch has the following structure:

teleop xbox360.launch

1 <launch>

2 <arg name="uri" default="radio://0/80/2M" />

3 <arg name="joy_dev" default="/dev/input/js0" />

4 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />

5 <group ns="crazyflie">

6 <include file="$(find

crazyflie_driver)/launch/crazyflie_add.launch">

7 <arg name="uri" value="$(arg uri)" />

8 <arg name="tf_prefix" value="crazyflie" />

9 <arg name="enable_logging" value="True" />

10 </include>

11 <node name="joy" pkg="joy" type="joy_node" output="screen" >

12 <param name="dev" value="$(arg joy_dev)" />

13 </node>

14 <include file="$(find crazyflie_demo)/launch/xbox360.launch" />

15 <node name="crazyflie_demo_controller" pkg="crazyflie_demo"

type="controller.py" output="screen" />

16 </group>

17 <node pkg="rviz" type="rviz" name="rviz" args="-d $(find

crazyflie_demo)/launch/crazyflie.rviz" />

18 <node pkg="rqt_plot" type="rqt_plot" name="rqt_plot1"

args="/crazyflie/battery"/>

19 <node pkg="rqt_plot" type="rqt_plot" name="rqt_plot2"

args="/crazyflie/rssi"/>

20 </launch>

In line 4 the crazyflie_server is launched, which accesses the Crazyradio
to communicate with the Crazyflie. Lines 5 to 16 contain information about

Flying Multiple UAVs Using ROS 11

the Crazyflie we want to control. First, the Crazyflie is added with a spec-
ified URI. Second, the joy_node is launched to create the joy topic. This
particular joystick is configured by including xbox360.launch. This file will
launch a hector_quadcopter_teleop node with the appropriate settings for
the XBox360 controller. Furthermore, controller.py is started; this maps ad-
ditional joystick buttons to Crazyflie specific behaviors. For example, the red
button on your controller will cause the Crazyflie to turn off all propellers (emer-
gency mode). Finally, lines 17 to 19 start rviz and two instances of rqt_plot
for visualization. Figure 4 shows a screenshot of rviz as it visualizes the data
from the inertial measurement unit as streamed from the Crazyflie at 100 Hz.
The other two rqt_plot instances show the current battery voltage and radio
signal strength indicator (RSSI), respectively.

Fig. 4. Screenshot of rviz showing the IMU data.

If you tilt your Crazyflie, you should instantly see the IMU arrow changing
in rviz. You can now use the joystick to fly — the default uses the left stick for
thrust (up/down) and yaw (left/right) and the right stick for pitch (up/down)
and roll (left/right). Also, the red B-button can be used to put the ROS driver
in emergency mode. In that case, your Crazyflie will immediately turn off its
engines (and if it was flying it will fall to the ground).

12 Flying Multiple UAVs Using ROS

4.2 Add Support for Another Controller

Support for another joystick can be easily added, as long as it is recognized as
a joystick by the operating system. The major difference between joysticks is
the mapping between the different axes and buttons of a joystick to the desired
functionality. In the following steps we first try to find the desired mapping and
use that to configure the crazyflie_ros stack accordingly.

1. Attach your joystick. This will create a new device file, e.g. /dev/input/js0.
You can use dmesg to find details about which device file was used in the
system log.

2. Run the following command in order to execute the joy_node:

$ rosrun joy joy_node _dev:=/dev/input/js0

3. In another terminal, execute:

$ rostopic echo /joy

This will print the joystick messages published by joy_node. Move your
joystick to find the desired axes mapping. For example, you might increase
the thrust on your joystick and see that the second number of the axes array
decreases.

4. Change the axis mapping in xbox360.launch (or create a new file) by up-
dating parameters x_axis, y_axis, z_axis, and yaw_axis accordingly. You
can use negative axis values to indicate that this axis should be inverted. For
example, in the previous example for the thrust changes, you would choose
-2 as axis for z_axis.

5. Update the button mapping in crazyflie_demo/scripts/controller.py

to change which button triggers high-level behavior such as emergency.

The PS3 controller is already part of the crazyflie_ros stack and the map-
ping was found in the same way as described above.

5 Teleoperation of Multiple UAVs

This section discusses the initial setup: how to assign unique addresses to each
UAV, how to communicate using fewer radios than UAVs, and how to find
good communication channels to decrease interference between UAVs as well as
between UAVs and existing infrastructure such as WiFi.

Flying multiple Crazyflies is mainly limited by the communication band-
width. One way to handle this issue is to have one Crazyradio per Crazyflie and
to use a different channel for each of them. There are two major disadvantages
to this approach:

– The number of USB ports on a computer is limited. Even if you would add
additional USB hubs, this adds additional latency because USB operates
serially.

Flying Multiple UAVs Using ROS 13

– There are 125 channels available; however, not all of them might lead to good
performance since the 2.4 GHz band is shared. For example, BlueTooth and
WiFi operate in the same band.

Therefore, we will use a single Crazyradio to control multiple Crazyflies and
share the channels used. Hence, we will need to assign unique addresses to each
Crazyflie to avoid crosstalking between the different quadcopters.

5.1 Assigning A Unique Address

The communication chips used in the Crazyflie and Crazyradio (nRF51 and
nRF24LU1+ respectively) permit 40-bit addresses. By default, each Crazyflie
has 0xE7E7E7E7E7 assigned as address. You can use the Bitcraze PC Client to
change the address using the following steps:

1. Start the Bitcraze PC Client.

2. Make sure the address field is set to 0xE7E7E7E7E7 and click “Scan.” The
drop-down box containing “Select an interface” should now have another
entry containing the URI of your Crazyflie, for example radio://0/100/2M

(See Fig. 5, left). Select this entry and click “Connect.”

3. In the “Connect” menu, select the item “Configure 2.0.” In the resulting
dialog (see Fig 5, right) change the address to a unique number, for example
0xE7E7E7E701 for your first Crazyflie, 0xE7E7E7E702 for the second one and
so on. Select “Write” followed by “Exit.”

4. In the PC Client, select “Disconnect.”

5. Restart your Crazyflie.

6. Update the address field of the client (1 in Fig. 5, left) and click “Scan.” If
everything was successful, you should now see a longer URI in the drop-down
box containing radio://0/100/2M/E7E7E7E701.

If it does not work, verify that you have the latest firmware for both nRF51
and STM32 flashed. This feature might not be available or working properly
otherwise. The address (and other radio parameters) are stored in EEPROM
and therefore will remain even if you upgrade the firmware.

Scanning Limitation

The scan feature of both ROS driver and Bitcraze PC client assume
that you know the address of your Crazyflie (it is not feasible to try
240 different addresses during scanning). If you forget the address, you
will need to reset the EEPROM to its default values by connecting the
Crazyflie directly to the PC using a USB cable and running a Python
scripta.

a https://wiki.bitcraze.io/doc:crazyflie:dev:starting#reset_eeprom

https://wiki.bitcraze.io/doc:crazyflie:dev:starting#reset_eeprom

14 Flying Multiple UAVs Using ROS

Fig. 5. Left: To connect to a Crazyflie, first enter its address, click “Scan”, and finally
select the found Crazyflie in the drop-down box. Right: The configuration dialog for
the Crazyflie to update radio related parameters.

5.2 Finding Good Communication Parameters

The radio can be tuned by changing two parameters: datarate and channel. The
datarate can be 250 kBit/s, 1 MBit/s, or 2 MBit/s. A higher datarate has a lower
chance of collision with other networks such as WiFi but less range. Hence, for
indoor applications the highest datarate (2 MBit/s) is recommended.

The channel number defines the offset in MHz from the base frequency of
2400 MHz. For example, channel 15 sets the operating frequency to 2415 MHz
and channel 80 refers to an operating frequency of 2480 MHz. If you selected
2 MBit/s as datarate, the channels need to have a spacing of at least 2 MHz
(otherwise, a 1 MHz spacing is sufficient).

Unlike WiFi, there is no channel hopping implemented in the Crazyflie. That
means that the selected channel is very important because it will not change
over time. On the other hand, interference can change over time; for example,
a WiFi router might switch channels at runtime. Therefore, it is best if, during
your flights, you can disable any interfering signal such as WiFi or wireless
mouse/keyboards which use the 2.4 GHz band. If that is not possible, you can
use the following experiments to find a set of good channels:

– Use the Bitcraze PC Client to teleoperate the Crazyflie in the intended space.
Look at the “Link Quality” indicator on the top right. This indicator shows
the percentage of successfully delivered packets. If it is low, there is likely
interference.

– If you teleoperate the Crazyflie using ROS, there will be a ROS warning if the
link quality is below a certain threshold. Avoid those channels. Additionally,
rqt_plot shows the Radio Signal Strength Indicator (RSSI). This value,
measured in -dBm, indicates the signal strength, which is affected both by
distance and interference. A low value (e.g., 35) is good, while a high value
(> 80) is bad. For example, the output in Fig. 6 suggests that another
channel should be used, because the second half of the plot shows additional
noise caused by interference.

Flying Multiple UAVs Using ROS 15

Fig. 6. Output of rqt_plot showing the radio signal strength indicator. The first 15 s
show a good signal, while the second half shows higher values and noise caused by
interference.

Once you have found a set of good channels, you can assign them to your
Crazyflies, using the Bitcraze PC Client (see section 5.1 for details). You can
share up to four Crazyflies per Crazyradio with reasonable performance. Hence,
the number of channels you need is about a quarter of the number of Crazyflies
you intend to fly.

Legal Restrictions

In some countries the 2.4 GHz band is limited to certain channels. Please
refer to your local regulations before you adjust the channel.
For example, in the United States frequencies between 2483.5 and
2500 MHz are power-restricted and as a result frequently not used by
WiFi routers. Hence, channels 84 to 100 might be a good choice there.
Channels above 2500 MHz are not allowed to be used in the United States.

5.3 ROS Usage (Multiple Crazyflies)

Let’s assume that you have two Crazyflies with unique addresses, two joysticks,
and a single Crazyradio. You can teleoperate them using the following command:

$ roslaunch crazyflie_demo multi_teleop_xbox360.launch

uri1:=radio://0/100/2M/E7E7E7E701

uri2:=radio://0/100/2M/E7E7E7E702

This should connect to both Crazyflies, visualize their state in rivz, and plot
real-time data using rqt_graph. Furthermore, each joystick can be used to tele-
operate one of the Crazyflies.

The launch file looks very similar to the single UAV case:

16 Flying Multiple UAVs Using ROS

multi teleop xbox360.launch

1 <launch>

2 <arg name="uri1" default="radio://0/90/2M" />

3 <arg name="uri2" default="radio://0/80/2M" />

4 <arg name="joy_dev1" default="/dev/input/js0" />

5 <arg name="joy_dev2" default="/dev/input/js1" />

6

7 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />

8 <group ns="crazyflie1">

9 <!-- Similar to before -->

10 </group>

11 <group ns="crazyflie2">

12 <!-- Similar to before -->

13 </group>

14 <!-- Visualization (Similar to before) -->

15 </launch>

In particular, we still have a single crazyflie_server (which now manages
both Crazyflies). However, we have two different namespaces (crazyflie1 and
crazyflie2). The content of those namespaces is nearly identical to the single
UAV case (compare lines 5 to 16 in teleop_xbox360.launch, section 4) and
thus not repeated here for clarity.

In order to teleoperate more than two Crazyflies, you simply need to add
more groups with different namespaces to the launch file. If you want the ROS
driver to use a different Crazyradio, you can adjust the first number in the
URI. For example, radio://1/100/2M/E7E7E7E701 uses the second Crazyradio
(or reports an error if only one is plugged in). It is important to consider the
following for the usage of multiple radios:

– For improved performance, use the same channel per Crazyradio. This avoids
that the radio changes channels whenever it switches between sending to
different Crazyflies.

– If you do not need the IMU raw data, disable it by setting enable_logging

to False when you include the crazyflie_add.launch file. This saves band-
width and allows you to use more than two Crazyflies per radio.

Depending on your packet drop rate, you can use up to two Crazyflies per
Crazyradio if logging is enabled and up to four otherwise. It does work with a
higher number as well, but you will see decreasing controllability since the radio
is used in a time-slice fashion.

6 Hovering

A first important step for autonomous flight of a quadcopter is hovering in
place. This also requires the ability to take off from the ground and land after

Flying Multiple UAVs Using ROS 17

the flight. All of these basic motions require a position controller, which takes
the Crazyflie’s current position as input in order to compute new commands
for the Crazyflie. Hence, this position controller is replacing the teleoperating
human we had before.

This section describes the crazyflie_controller package and how it is used
for autonomous take-off, landing, and hovering. As before, first the single UAV
case is considered and later it is extended to the multi-UAV case. Furthermore,
this section will cover working strategies on how to use the crazyflie with optical
motion capture systems such as VICON9 and OptiTrack10. This is, due to the
size of the UAV, a non-trivial task, particularly for swarming applications.

6.1 Position Estimate

We assume that there is already a way to track the position and preferably yaw
of the Crazyflies at at least 30 Hz. It is possible to use Microsoft Kinect11, AR
tags, or Ultra-Wideband Localization [10] for this task. However, those solutions
are not as accurate at specialized motion capture systems, which can reach sub-
millimeter accuracy. We want to fly many small quadcopters, perhaps in a dense
formation, and hence need a very accurate position feedback. Therefore, we
will discuss the usage of optical motion capture systems such as VICON or
OptiTrack.

We run our experiments in a space of approximately 5 m× 4 m equipped
with a 12-camera VICON MX motion capture system. Optical motion capture
systems typically require spatially unique marker configurations for each object
to track such that it is possible to identify each object12. Otherwise, occlusions
or a short-term camera outage would result in unrecoverable tracking failures.
For a small platform like the Crazyflie, there are not many ways to place mark-
ers uniquely on the existing frame. In particular, if you need more than four
Crazyflies, you will need to add additional structures where you can place the
markers:

– Propeller guards. They are commercially available for the Hubsan X4 toy
quadrotor13, which has identical physical dimensions. Moreover, you can use
a 3D printer to print your own guard based on published files on thingiev-
erse14.

– Custom motor mounts. OpenSCAD15 files can be found in the official me-
chanical repository16.

9 http://www.vicon.com/
10 https://www.optitrack.com/
11 https://github.com/ataffanel/crazyflie-ros-kinect2-detector
12 Some solutions, like the Crazyswarm project [5], use identical marker configurations.
13 You can search on amazon for “propeller guard hubsan x4.”
14 http://www.thingiverse.com/search?q=crazyflie&sa=
15 http://www.openscad.org/
16 https://github.com/bitcraze/bitcraze-mechanics/tree/master/

cf2-mount-openscad

http://www.vicon.com/
https://www.optitrack.com/
https://github.com/ataffanel/crazyflie-ros-kinect2-detector
http://www.thingiverse.com/search?q=crazyflie&sa=
http://www.openscad.org/
https://github.com/bitcraze/bitcraze-mechanics/tree/master/cf2-mount-openscad
https://github.com/bitcraze/bitcraze-mechanics/tree/master/cf2-mount-openscad

18 Flying Multiple UAVs Using ROS

– Spatial extensions in form of sticks, either mounted on the rotor arms or on
top of the Crazyflie as extension board.

Fig. 7. Left: Crazyflie with four optical markers (6.4 mm) attached and no additional
guard used. Right: Crazyflie with markers on propeller guard to allow a higher number
of unique marker configurations.

For small groups of up to four Crazyflies, we place the markers directly on
the Crazyflies. We flew up to six Crazyflies (using three Crazyradios) using the
propeller guard approach. However, this significantly reduces flight times and
changes the flight dynamics.

The exact method is highly dependent on your motion capture system, so
there will be some experimentation involved. Similarly, the best markers to use
depend on the system as well. We successfully use 6.4 mm and 7.9 mm spherical
traditional reflective markers from B&L Engineering17. A smaller size impacts
the flight dynamics less (and fits underneath the rotors) and is preferred as long
as the motion capture system is able to detect the markers properly. We use the
No-Base option of the markers and small pieces of Command Poster Strips18 to
attach them to the Crazyflie.

If you use VICON, it is best to install the vicon_bridge ROS package using
the following steps:

$ cd ~/crazyflie_ws/src

$ git clone https://github.com/ethz-asl/vicon_bridge.git

$ cd ~/crazyflie_ws

$ catkin_make

17 http://www.bleng.com/
18 http://www.command.com

http://www.bleng.com/
http://www.command.com

Flying Multiple UAVs Using ROS 19

This will add the source to your workspace and compile it. The package assumes
that you have another PC with VICON Tracker running in the same network,
accessible under the hostname vicon and with no firewalls in between. You can
test your installation by running:

$ roslaunch vicon_bridge vicon.launch

In another terminal, execute:

$ rosrun tf view_frames

and open the resulting frames.pdf file to check your transformations. It should
look like Fig. 8.

Fig. 8. Output of view_frames for two objects names crazyflie1 and crazyflie2,
respectively.

If you use OptiTrack (or any other motion capture system which supports
VRPN19), you can install the vrpn_client_ros package using:

$ sudo apt-get install ros-indigo-vrpn-client-ros

In order to test it, you will need to write a custom launch file, similar to the
sample file provided in the package20. Afterwards, you can check if it works using
view_frames.

Coordinate System

It is important to verify that your transformations match the ROS stan-
darda. That means we use a right-handed coordinate system with x for-

19 https://github.com/vrpn/vrpn/wiki
20 https://github.com/clearpathrobotics/vrpn_client_ros/blob/indigo-devel/

launch/sample.launch

https://github.com/vrpn/vrpn/wiki
https://github.com/clearpathrobotics/vrpn_client_ros/blob/indigo-devel/launch/sample.launch
https://github.com/clearpathrobotics/vrpn_client_ros/blob/indigo-devel/launch/sample.launch

20 Flying Multiple UAVs Using ROS

ward, y left, and z pointing up. One way to check is to launch rviz, and
add a “TF” visualization. Move the Crazyflie around in your hand, while
verifying that the visualization in rviz matches the expected coordinate
system.

a http://www.ros.org/reps/rep-0103.html

6.2 ROS Usage (Single Crazyflie)

Here, we assume that you have a working localization for a single Crazyflie
already. We assume that there is a ROS transform between the frames /world

and /crazyflie1 and that radio://0/100/2M/E7E7E7E701 is the URI of your
Crazyflie.

With VICON you can launch the following:

$ roslaunch crazyflie_demo hover_vicon.launch

uri:=radio://0/100/2M/E7E7E7E701 frame:=crazyflie1 x:=0 y:=0

z:=0.5

Once the Crazyflie is connected, you can press the blue (X) button on the
XBox360 controller to take off and the green (A) button to land. If success-
ful, the Crazyflie should hover at (0, 0, 0.5). Use the red (B) button to handle
any emergency situation (or unplug the Crazyradio to get the same effect). The
launch file starts rviz as well, visualizing both the Crazyflie’s current position
and goal position (indicated by a red arrow).

If you are using OptiTrack, you can use hover_vrpn.launch rather than
hover_vicon.launch.

The launch file is similar to before, but adds a few more elements:

hover vicon.launch

1 <launch>

2 <!-- Launch file arguments -->

3 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />

4 <group ns="crazyflie">

5 <!-- Similar to before -->

6 <node name="joystick_controller" pkg="crazyflie_demo"

type="controller.py" output="screen">

7 <param name="use_crazyflie_controller" value="True" />

8 </node>

9 <include file="$(find

crazyflie_controller)/launch/crazyflie2.launch">

10 <arg name="frame" value="$(arg frame)" />

11 </include>

12 <node name="pose" pkg="crazyflie_demo" type="publish_pose.py"

output="screen">

http://www.ros.org/reps/rep-0103.html

Flying Multiple UAVs Using ROS 21

13 <param name="name" value="goal" />

14 <param name="rate" value="30" />

15 <param name="x" value="$(arg x)" />

16 <param name="y" value="$(arg y)" />

17 <param name="z" value="$(arg z)" />

18 </node>

19 <node pkg="tf" type="static_transform_publisher"

name="baselink_broadcaster" args="0 0 0 0 0 0 1 $(arg

frame) /crazyflie/base_link 100" />

20 </group>

21 <!-- run vicon bridge or vrpn_client_ros -->

22 <param name="robot_description" command="$(find xacro)/xacro.py

$(find crazyflie_description)/urdf/crazyflie.urdf.xacro" />

23 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find

crazyflie_demo)/launch/crazyflie_pos.rviz" required="true"

/>

24 </launch>

We start by defining the arguments (not shown here for brevity) and launching
the crazyflie server (line 3). Within the group element, we include crazy-

flie add (not shown). Now we get a few differences: in line 7 we set use_

crazyflie_controller to True to enable the takeoff and landing behavior
using the joystick. Moreover, we add a position controller node by including
crazyflie2.launch (lines 9 to 11). The static goal position for this controller
is published in the /crazyflie/goal topic in lines 12 to 18. The group ends by
publishing a static transform from the given frame to the Crazyflie’s base link.
This allows us to visualize the current pose of the Crazyflie in rviz using the
3D model provided in the crazyflie_description package (lines 19 and 22).

6.3 ROS Usage (Multiple Crazyflies)

The main difference between the single UAV and multi-UAV case is that the
joystick should be shared: Takeoff, landing, and an emergency should trigger the
appropriate behavior on all Crazyflies. This allows us to have a single backup
pilot who can trigger emergency power-off in case of an issue. The low inertia
of the Crazyflies causes them to be very robust to mechanical failures when
dropping from the air. We have had crashes from heights of up to 4 m on a slightly
padded floor, with only propellers and/or motor mounts needing replacement.
(Replacement parts are available for purchase separately.)

The crazyflie_demo package contains an example for hovering two Crazy-
flies. You can run it for VICON by executing:

$ roslaunch crazyflie_demo multi_hover_vicon.launch

uri1:=radio://0/100/2M/E7E7E7E701 frame1:=crazyflie1

uri2:=radio://0/100/2M/E7E7E7E702 frame2:=crazyflie2

22 Flying Multiple UAVs Using ROS

There is also an example using VRPN (multi_hover_vrpn.launch). The
launch file is similar to the single Crazyflie case:

multi hover vicon.launch

1 <launch>

2 <!-- Launch file arguments -->

3 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />

4 <node name="joy" pkg="joy" type="joy_node" output="screen">

5 <param name="dev" value="$(arg joy_dev)" />

6 </node>

7 <group ns="crazyflie1">

8 <!-- Similar to before -->

9 <node name="joystick_controller" pkg="crazyflie_demo"

type="controller.py" output="screen">

10 <param name="use_crazyflie_controller" value="True" />

11 <param name="joy_topic" value="/joy" />

12 </node>

13 </group>

14 <group ns="crazyflie2">

15 <!-- Similar to first group -->

16 </group>

17 <!-- Similar to before -->

In this case, we only need a single joystick; the joy node for it is instantiated in
lines 4 to 6. In order to use that topic, we need to supply controller.py with
the correct topic name (line 11).

We can summarize what we have learned so far by looking at the output of
rqt_graph, as shown in Fig. 9. It shows the various nodes (ellipsoid), names-
paces (rectangles), and topics (arrows). In particular, we have two namespaces:
crazyflie1 and crazyflie2. Each namespace contains the nodes used for a
single Crazyflie: joystick_controller to deal with the user-input, pose to
publish the (static) goal position for that particular Crazyflie, and controller

to compute the low-level attitude commands based on the high-level user input.
The attitude commands are transmitted using the cmd_vel topics. There is only
one node, the crazyflie_server, which listens on those topics and transmits
the data to both Crazyflies, using the Crazyradio. The joy node provides the
input to both namespaces, allowing a single user to control both Crazyflies. Sim-
ilarly, the vicon node is shared between Crazyflies, because the motion-capture
system provides feedback (in terms of tf messages) of all quadcopters. The
baselink_broadcaster nodes are only used for visualization purposes, allowing
us to visualize a 3D model of the Crazyflie in rviz. More than two Crazyflies
can be used by duplicating the groups in the launch file accordingly. This will
result in more namespaces; however, the crazyflie_server, vicon, and joy

nodes will always be shared between all Crazyflies.

Flying Multiple UAVs Using ROS 23

crazyflie1

crazyflie2

vicon crazyflie_serverjoy

/crazyflie1/goal

/crazyflie1/controller /crazyflie1/cmd_vel

/crazyflie_server

/crazyflie1/joystick_controller

/crazyflie1/baselink_broadcaster

/tf

/crazyflie1/pose

/crazyflie2/goal

/crazyflie2/controller /crazyflie2/cmd_vel/crazyflie2/joystick_controller

/crazyflie2/pose

/crazyflie2/baselink_broadcaster

/vicon
/joy /tf_static

Fig. 9. Visualization of the different nodes and their communication using rqt_graph.

7 Waypoint Following

The hovering of the previous section is extended to let the UAVs follow specified
waypoints. This is useful if you want the robots to fly specified routes, for ex-
ample for delivery systems or construction tasks. As before, first the single-UAV
case is presented, followed by how to use it in the multi-UAV case.

Here, we concentrate on the ROS-specific changes in a toy example where
the waypoints are static and known upfront. Planning such routes for a group
of quadcopters is a difficult task in itself and we refer the reader to related
publications [11,12,13].

The main difference between hovering and waypoint following is that, for the
latter, the goal changes dynamically. First, test the behavior of the controller for
dynamic waypoint changes:

$ roslaunch crazyflie_demo teleop_vicon.launch

Here, the joystick is used to change the goal pose rather than influencing the
motor outputs directly. The visualization in rviz shows the current goal pose
as well as the quadcopter pose to provide some feedback.

Waypoint following works in a similar fashion: the first waypoint is set as goal
position and, once the Crazyflie reaches its current goal (within some radius),
the goal point is set to the next position. This simple behavior is implemented in
crazyflie_demo/scripts/demo.py. Each Crazyflie can have its own waypoint
defined in a Python script, for example:

24 Flying Multiple UAVs Using ROS

1 #!/usr/bin/env python

2 from demo import Demo

3

4 if __name__ == ’__main__’:

5 demo = Demo(

6 [

7 #x , y, z, yaw, sleep

8 [0.0 , 0.0, 0.5, 0, 2],

9 [1.5 , 0.0, 0.5, 0, 2],

10 [-1.5 , 0.0, 0.75, 0, 2],

11 [-1.5 , 0.5, 0.5, 0, 2],

12 [0.0 , 0.0, 0.5, 0, 0],

13]

14)

15 demo.run()

Here, x, y, and z are in meters, yaw is in radians, and sleep is the delay in
seconds before the goal switches to the next waypoint.

Adjust demo1.py and demo2.py to match your coordinate system and run
the demo for two Crazyflies using:

$ roslaunch crazyflie_demo multi_waypoint_vicon.launch

The path for the two Crazyflies should not be overlapping because simple way-
point following does not have any time guarantees. Hence, it is possible that the
first Crazyflie finishes much earlier than the second one, even if the total path
length and sleep time are the same. This limitation can be overcome by gen-
erating a trajectory for each Crazyflie and setting the goal points dynamically
accordingly.

The launch file looks very similar to before:

multi waypoint vicon.launch

1 <launch>

2 <!-- Launch file arguments -->

3 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />

4 <node name="joy" pkg="joy" type="joy_node" output="screen">

5 <param name="dev" value="$(arg joy_dev)" />

6 </node>

7 <group ns="crazyflie1">

8 <!-- Similar to before -->

9 <node name="pose" pkg="crazyflie_demo" type="demo1.py"

output="screen">

10 <param name="frame" value="$(arg frame1)" />

11 </node>

12 </group>

Flying Multiple UAVs Using ROS 25

13 <group ns="crazyflie2">

14 <!-- Similar to first group -->

15 </group>

16 <!-- Similar to before -->

17 </launch>

Instead of publishing a static pose, each Crazyflie now executes its own demo<x>

.py node, which in turn publishes goals dynamically. An example video demon-
strating six Crazyflies following dynamically changing goals is available online21.

8 Troubleshooting

As with most physical robots, debugging can be difficult. In order to identify
and eventually solve the problem, it helps to simplify the failing case until it is
easier to analyze. In this section, we provide several actions which have helped
us resolve issues in the past. In particular, we first identify if the issue is on the
hardware or software side, and provide recipes to address both kinds of issues.

1. Verify that the position estimate works correctly. For example, use rviz to
visualize the current pose of all quadrotors, move a single quadrotor manually
at a time and make sure that rviz reflects the changes accordingly.

2. Check the wireless connection between the PC and the Crazyflies. If the
packet drop rate is high, the crazyflie_server will output ROS warnings.
Similarly, you can check the LEDs on each Crazyradio; ideally the LEDs show
mostly green. If there is an communication issue the LEDs will frequently
flash red as well. If communication is an issue, try a different channel by
following section 5.2.

3. Work your way backwards: If a swarm fails, test the individual Crazyflies (or
subgroups of them). If waypoint following fails, test hovering and, if there is
an issue there as well, test teleoperation using ROS followed by teleoperation
using the Bitcraze PC Client.

4. Issues with many Crazyflies but not smaller subgroups can occur if there are
communication issues or if the position estimate suddenly worsens. For the
first case, try reducing the number of Crazyflies per Crazyradio and adjusting
the channel. For the second case try to estimate the latency of your position
estimator. If you have multiple objects enabled, there might be axis-flips
(marker configurations might not be unique enough) or the computer doing
the tracking might be adding too much latency for the controller to operate
properly.

5. If waypoint following does not work, make sure that you visualize the current
waypoint in rviz. In general, the waypoints should not jump around very
much. The provided controller is a hover controller which works well if the
goal point is within a reasonable range of the Crazyflie’s current position.

21 http://youtu.be/px9iHkA0nOI

http://youtu.be/px9iHkA0nOI

26 Flying Multiple UAVs Using ROS

6. If hovering does not work, you can try to tune the provided controller.
For example, if you have a higher payload you might increase the propor-
tional gains. You can find the gains in crazyflie_controller/config/

crazyflie2.yaml.

7. If teleoperation does not work or it is very hard to keep the Crazyflie hovering
in place, there is most likely an issue with your hardware. Make sure that
the propellers are balanced22 and that the battery is placed in the center of
mass. When in doubt, replace the propellers.

9 Inside the crazyflie ros Stack

This section will cover some more details of the stack. The knowledge you gain
will not only help you better understand on what is happening under the hood,
but also provide the foundations to change or add features. Furthermore, some
of the design insights given might be helpful for similar projects.

We will start with a detailed explanation of the different packages that
compose the stack and their relationship. For each package, we will discuss
important components and the underlying architecture. For example, for the
crazyflie_driver package we will explain the different ROS topics and ser-
vices, why there is a server, and how the radio time-slicing works. A section on
guidelines for possible extensions will conclude the chapter.

9.1 Overview

The crazyflie_ros stack is composed of six different packages:

crazyflie cpp contains a C++11 implementation for the Crazyradio driver as
well as the Crazyflie. It supports the logging framework streaming data in
real-time and the parameter framework adjusting parameters such as PID
gains. This package has no ROS dependency and only requires libusb and
boost. Unlike the official Python SDK it supports multiple Crazyflies over
a shared radio.

crazyflie tools contains standalone command line tools which use the crazy-

flie cpp library. Currently, there is a tool to find any Crazyflies in range and
tools to list the available logging variables and parameters. Because there is
no ROS dependency, the tools can be used without ROS as well.

crazyflie description contains the URDF description of the Crazyflie to visu-
alize in rviz. The models are currently not accurate enough to be used for
simulation.

crazyflie driver contains a ROS wrapper around crazyflie_cpp. The logging
subsystem is mapped to ROS messages and parameters are mapped to ROS
parameters. One node (crazyflie_server) manages all Crazyflies.

22 https://www.bitcraze.io/balancing-propellers/

https://www.bitcraze.io/balancing-propellers/

Flying Multiple UAVs Using ROS 27

crazyflie controller contains a PID position controller for the Crazyflie. As
long as the position of the Crazyflie is known (e.g. by using a motion capture
system or a camera), it can be used to hover or execute (non-aggressive) flight
maneuvers.

crazyflie demo contains sample scripts and launch files for teleoperation, hov-
ering, and waypoint following for both single and multi Crazyflie cases.

crazyflie_cpp

USB Driver
Communication
Protocol

crazyflie_tools

Command Line Tools

crazyflie_controller

Position Controller

crazyflie_description

URDF
(Visualization only)

crazyflie_driver

ROS Wrapper

crazyflie_demo

Teleoperation
Hovering
Waypoint Navigation

Uses C++11 Uses ROS

Fig. 10. Dependencies between the different packages within the crazyflie_ros stack.

The dependencies between the packages are shown in Fig 10. Both crazy-

flie tools and crazyflie_demo contain high-level examples. Because crazy-

flie cpp does not have any ROS dependency, it can be used with other frame-
works as well. We will now discuss the different packages in more detail.

9.2 crazyflie cpp

The crazyflie_cpp package is a static C++ library, with some components
being header-only to maximize type-safety and efficiency. The library consists of
four classes:

Crazyradio This class uses libusb to communicate with a Crazyradio. It sup-
ports the complete protocol23 implemented in the Crazyradio firmware. The
typical approach is to configure the radio (such as channel and datarate to
use) first, followed by actual sending and receiving of data. The Crazyradio
operates in Primary Transmitter Mode (PTX), while the Crazyflie operates
in Primary Receiver Mode (PRX). That means that the Crazyradio is send-
ing data (with up to 32 bytes of payload) using the radio and, if the data
is successfully received, will receive an acknowledgement from the Crazyflie.
The acknowledgment packet might contain up to 32 bytes of user-data as
well. However, since the acknowledgment has to be sent immediately, the
acknowledgment is not a direct response to the request sent. Instead, the

23 https://wiki.bitcraze.io/projects:crazyradio:protocol

https://wiki.bitcraze.io/projects:crazyradio:protocol

28 Flying Multiple UAVs Using ROS

communication can be seen as two asynchronous data streams, with one
stream going from the Crazyradio to the Crazyflie and another stream for
the reverse direction. If a request-respond like protocol is desired, it has to
be implemented on top of the low-level communication infrastructure. The
Crazyradio will automatically resend packets if no acknowledgment has been
received.

Below is a small example on how to use the class to send a custom packet:

1 Crazyradio radio(0); // Instantiate an object bound to the

first Crazyflie found

2 radio.setChannel(100); // Update the base frequency to 2500 MHz

3 radio.setAddress(0xE7E7E7E701); // Set the address to send to

4 // Send a packet

5 uint8_t data[] = {0xCA, 0xFE};

6 Crazyradio::Ack ack;

7 radio.sendPacket(data, sizeof(data), ack);

8 if (ack.ack) {

9 // Parse ack.data and ack.size

10 }

Exceptions are thrown in cases of error, for example if no Crazyradio could
be found or if the user does not have the permission to access the USB
dongle.

Crazyflie This class implements the protocol of the Crazyflie24 and provides
high-level functions to send new setpoints and update parameters. In order
to support multiple Crazyflies correctly, it instantiates the Crazyradio auto-
matically. A global static array of Crazyradio instances and mutexes is used.
Whenever the Crazyflie needs to send a packet, it first uses the mutex to
lock its Crazyradio, followed by checking if the radio is configured properly.
If not, the configuration (such as address) is updated and finally the packet
is sent. The mutex ensures that multiple Crazyflies can be used in separate
threads, even if they share a Crazyradio. The critical section of sending a
packet causes the radio to multiplex the requests in time. Therefore, the
bandwidth is split between all Crazyflies which share the same radio.

Below is a small example demonstrating how multiple Crazyflies can be used
with the same radio:

1 Crazyflie cf1("radio://0/100/2M/E7E7E7E701"); // Instantiate

first Crazyflie object

2 Crazyflie cf2("radio://0/100/2M/E7E7E7E702"); // Instantiate

second Crazyflie object

3 // launch two threads and set new setpoint at 100 Hz

4 std::thread t1([&] {

5 while (true) {

24 https://wiki.bitcraze.io/projects:crazyflie:crtp

https://wiki.bitcraze.io/projects:crazyflie:crtp

Flying Multiple UAVs Using ROS 29

6 cf1.sendSetpoint(0, 0, 0, 10000); // send roll, pitch,

yaw, and thrust

7 std::this_thread::sleep_for(std::chrono::milliseconds(10));

8 }

9 });

10 std::thread t2([&] {

11 while (true) {

12 cf2.sendSetpoint(0, 0, 0, 20000); // send roll, pitch,

yaw, and thrust

13 std::this_thread::sleep_for(std::chrono::milliseconds(10));

14 }

15 });

16 t1.join();

17);

First, two Crazyflie objects are instantiated. Then two threads are launched
using C++11 and lambda functions. Each thread sends an updated setpoint
consisting of roll, pitch, yaw, and thrust to its Crazyflie at about 100 Hz.

LogBlock<T> This set of templated classes is used to stream out sensor data
from the Crazyflie. The logging framework on the Crazyflie allows to create
so-called log blocks. Each log block is a struct with a maximum size of
28 bytes, freely arranged based on global variables available for logging in
the Crazyflie firmware. The list of available variables and their types can be
queried at runtime (requestLogToc method in the Crazyflie class).
This templated version provides maximum typesafety at the cost that you
need to know at compile time which log blocks to request.

LogBlockGeneric This class is very similar to LogBlock<T> but also allows
the user to dynamically create log blocks at runtime. The disadvantages of
this approach are that it does not provide typesafety and that it is slightly
slower at runtime.

9.3 crazyflie driver

We first give a brief overview of the ROS interface, including services, subscribed
topics, and published topics. In the second part we describe the usage and in-
ternal infrastructure in more detail.

Most of the services and topics are within the namespace of a particular
Crazyflie, denoted with 〈crazyflie〉. For example, if you have two Crazyflies, there
will be namespaces crazyflie1 and crazyflie2.

The driver supports the following services:

add crazyflie Adds a Crazyflie with known URI to the crazyflie_server

node. Typically, this is used with the helper application from crazyflie_add

from a launch file.
Type: crazyflie ros/AddCrazyflie

〈crazyflie〉/emergency Triggers an emergency state, in which no further mes-
sages to the Crazyflie are sent. The onboard firmware will stop all rotors if

30 Flying Multiple UAVs Using ROS

it did not receive a message for 500 ms, causing the Crazyflie to fall shortly
after the emergency was requested.
Type: std srvs/Empty

〈crazyflie〉/update params Uploads updated values of the specified parame-
ters to the Crazyflie. The parameters are stored locally on the ROS parame-
ter server. This service first reads the current values and then uploads them
to the Crazyflie.
Type: crazyflie ros/UpdataParams

The driver subcribes the following topics:

〈crazyflie〉/cmd vel Encodes the setpoint (attitude and thrust) of the Crazy-
flie. This can be used for teleoperation or automatic position control.
Type: geometry msgs/Twist

The following topics are being published:

〈crazyflie〉/imu Samples the inertial measurement unit of the Crazyflie every
10 ms, including the data from the gyroscope and accelerometer. The ori-
entation and covariance are not known and therefore not included in the
messages.
Type: sensor msgs/Imu

〈crazyflie〉/temperature Samples the temperature as reported by the barom-
eter every 100 ms. This might not be the ambient temperature, as the Crazy-
flie tends to heat up during operation.
Type: sensor msgs/Temperature

〈crazyflie〉/magnetic field Samples the magnetic field as measured by the
IMU every 100 ms. Currently, the onboard magnetometer is not calibrated
in the firmware. Therefore, external calibration is required to use it for nav-
igation. Type: sensor msgs/MagneticField

〈crazyflie〉/pressure Samples the air pressure as measured by the barometer
every 100 ms in mbar.
Type: std msgs/Float32

〈crazyflie〉/battery Samples the battery voltage every 100 ms in V.
Type: std msgs/Float32

〈crazyflie〉/rssi Samples the Radio Signal Strength Indicator (RSSI) of the
onboard radio in −dBm.
Type: std msgs/Float32

The crazyflie_driver consists of two ROS nodes: crazyflie_server and
crazyflie_add. The first manages all Crazyflies in the system (using one thread
for each), while the second one is just a helper node to be able to add Crazyflies
from a launch file.

It is possible to launch multiple crazyflie_server’s, but these cannot share
a Crazyradio. This is mainly a limitation of the operating system, which limits
the ownership of a USB device to one process. In order to hide this implementa-
tion detail, each Crazyflie thread will operate in its own namespace. If you use
rostopic, the topics of the first Crazyflie will be in the crazyflie1 namespace

Flying Multiple UAVs Using ROS 31

(or whatever tf_frame you assigned to it), even though the code is actually
executed within the crazyflie_server context. Each Crazyflie offers a topic
cmd_vel which is used to send the current setpoint (roll, pitch, yaw, and thrust)
and, if logging is enabled, topics such as imu, battery, and rssi. Furthermore,
services are used to trigger the emergency mode and to re-upload specified pa-
rameters. The values of the parameters themselves are stored within the ROS
parameter server. They are added dynamically once the Crazyflie is connected,
because parameter names, types, and values are all dynamic and dependent on
your firmware version. For that reason, it is currently not possible to use the
dynamic_reconfigure package, because in this case the parameter names and
types need to be known at compile time. Instead, a custom service call needs
to be triggered containing a list of parameters to update once a user changed a
parameter on the ROS parameter server. The following Python example can be
used to turn the headlight on (if the LED expansion is installed):

1 import rospy

2 from crazyflie_driver.srv import UpdateParams

3 rospy.wait_for_service("/crazyflie1/update_params")

4 update_params = rospy.ServiceProxy("/crazyflie1/update_params",

UpdateParams)

5 rospy.set_param("/crazyflie1/ring/headlightEnable", 1)

6 update_params(["ring/headlightEnable"])

After the service has become available, a service proxy is created and can be
used to call the service whenever a parameter needs to be updated. Updating
the parameter sets the parameter to a new value followed by a service call, which
will trigger an upload to the Crazyflie.

Another important part of the driver is the logging system support. If logging
is enabled, the Crazyflie will advertise a number of fixed topics. In order to receive
custom logging values (or at custom frequencies), you will either need to change
the source code or use custom log blocks. The latter has the disadvantage that
it is not typesafe (it just uses an array of floats as message type) and that it will
be slightly slower at runtime. You can use custom log blocks as follows:

customLogBlocks.launch

1 <launch>

2 <arg name="uri" default="radio://0/80/2M" />

3 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />

4 <group ns="crazyflie">

5 <node pkg="crazyflie_driver" type="crazyflie_add"

name="crazyflie_add" output="screen">

6 <param name="uri" value="$(arg uri)" />

7 <param name="tf_prefix" value="crazyflie" />

8 <rosparam>

32 Flying Multiple UAVs Using ROS

9 genericLogTopics: ["log1", "log2"]

10 genericLogTopicFrequencies: [10, 100]

11 genericLogTopic_log1_Variables: ["pm.vbat"]

12 genericLogTopic_log2_Variables: ["acc.x", "acc.y", "acc.z"]

13 </rosparam>

14 </node>

15 </group>

16 </launch>

Here, additional parameters are used within the crazyflie_add node to spec-
ify which log blocks to get. The first log block only contains pm.vbat and is
sampled every 10 ms. A new topic named /crazyflie1/log1 will be published.
Similarly, the /crazyflie1/log2 topic will contain three values (x, y, and z of
the accelerometer), published every 100 ms.

The easiest way to find the names of variables is by using the Bitcraze PC
Client. After connecting to a Crazyflie select “Logging Configurations” in the
“Settings” menu. A new dialog will open and list all variables with their respec-
tive types. Each log block can only hold up 28 bytes and the minimum update
period is 10 ms. You can also use the listLogVariables command line tool
which is part of the crazyflie_tools package to obtain a list with their respec-
tive types.

9.4 crazyflie controller

The Crazyflie is controlled by a cascaded PID controller. The inner attitude con-
troller is part of the firmware. The inputs are the current attitude, as estimated
using the IMU sensor data, and the setpoint (attitude and thrust), as received
over the radio. The controller runs at 250 Hz.

The crazyflie_controller node runs another outer PID controller, which
takes the current and goal position as input and produces a setpoint (attitude
and thrust) for the inner controller. This cascaded design is typical if the sensor
update rates are different [11]. In this case, the IMU can be sampled much more
frequently than the position.

A PID controller has absolute, integral, and differential terms on an error
variable:

u(t) = KP e(t) + KI

∫ t

0

e(t)dt + KD
de(t)

dt
, (1)

where u(t) is the control output and KP ,KI and KD are scalar parameters. The
error e(t) is defined as the difference between the goal and current value. The
crazyflie_controller uses four independed PID controllers for x, y, z, and
yaw, respectively. The controller also handles autonomous takeoff and landing.
The integral part of the z-PID controller is initialized during takeoff with the
estimated required base thrust to keep the Crazyflie hovering. The takeoff routine
linearly increases the thrust, until the takeoff is detected by the external position

Flying Multiple UAVs Using ROS 33

system. A state machine switches to the PID controller, using the current thrust
value as initial guess for the integral part of the z-axis PID controller. This avoids
retuning of a manual offset in case the payload changes or a different battery is
used.

The current goal can be changed by publishing to the goal topic. However,
since the controller makes the hover assumption, large jumps between different
control points should be avoided.

The various parameters can be tuned in a config file (crazyflie_controller/
config/crazyflie2.yaml), or a custom config file can be loaded instead of
the default one (see crazyflie_controller/launch/crazyflie2.launch for
an example).

9.5 Possible Extensions

The overview of the crazyflie_ros stack should allow you to reuse some of its
architecture ideas or to extend it further. For example, you can use the Crazyra-
dio and crazyflie_cpp for any other remote-controlled robot which requires a
low-latency radio link. The presented controller of the crazyflie_controller

package is a simple hover controller. A non-linear controller, as presented in [14]
or [11] might be an interesting extension to improve the controller performance.
Higher-level behaviors, such as following a trajectory rather than just goal points,
could make more interesting flight patterns possible. Finally, including simula-
tion for the Crazyflie25 could help research and development by enabling simu-
lated experiments.

10 Conclusion

In this chapter we showed how to use multiple small quadcopters with ROS in
practice. We discussed our target platform, the Bitcraze Crazyflie 2.0, and guided
the reader step-by-step to the process of letting multiple Crazyflies following
waypoints. We tested our approach on up to six Crazyflies, using three radios. We
hope that this detailed description will help other researchers use the platform
to verify algorithms on physical robots.

More recent research has shown that the platform can even be used for
swarms of up to 49 robots [5]. In the future, we would like to provide a sim-
ilar step-by-step tutorial about the additional required steps to guide other re-
searchers in working on larger swarms. Furthermore, it would be interesting to
make the work more accessible to a broader audience once more inexpensive but
accurate localization systems become available.

25 e.g. adding support to the RotorS package (http://wiki.ros.org/rotors_
simulator)

http://wiki.ros.org/rotors_simulator
http://wiki.ros.org/rotors_simulator

34 Flying Multiple UAVs Using ROS

11 Authors’ Biographies

Wolfgang Hönig has been a Ph.D. student at ACT Lab at University of South-
ern California since 2014. He holds a Diploma in Computer Science from
Technical University Dresden, Germany. He is the author and maintainer of
the crazyflie_ros stack.

Nora Ayanian is an Assistant Professor at University of Southern California.
She is the director of the ACT Lab at USC and received her Ph.D. from
the University of Pennsylvania in 2011. Her research focuses on creating
end-to-end solutions for multirobot coordination.

References

1. N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation
with aerial robots,” Autonomous Robots, vol. 30, no. 1, pp. 73–86, 2011.

2. F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller, J. S.
Willmann, F. Gramazio, M. Kohler, and R. D’Andrea, “The flight assembled archi-
tecture installation: Cooperative construction with flying machines,” IEEE Control
Systems, vol. 34, no. 4, pp. 46–64, 2014.

3. W. Hönig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian, “Mixed
reality for robotics,” in IEEE/RSJ Intl Conf. Intelligent Robots and Systems, 2015,
pp. 5382 – 5387.

4. A. Mirjan, F. Augugliaro, R. D’Andrea, F. Gramazio, and M. Kohler, Robotic
Fabrication in Architecture, Art and Design 2016. Cham: Springer International
Publishing, 2016, ch. Building a Bridge with Flying Robots, pp. 34–47.

5. J. A. Preiss, W. Hönig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large
nano-quadcopter swarm,” in IEEE/RSJ Intl Conf. Intelligent Robots and Systems
(Late Breaking Results), 2016.

6. N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro-
uav testbed,” IEEE Robot. Automat. Mag., vol. 17, no. 3, pp. 56–65, 2010.

7. S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R. DAn-
drea, “A platform for aerial robotics research and demonstration: The flying ma-
chine arena,” Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

8. B. Landry, “Planning and control for quadrotor flight through cluttered environ-
ments,” Master’s thesis, MIT, 2015.

9. J. Förster, “System identification of the crazyflie 2.0 nano quadrocopter,” Bache-
lor’s Thesis, ETH Zurich, 2015.

10. A. Ledergerber, M. Hamer, and R. D’Andrea, “A robot self-localization system
using one-way ultra-wideband communication,” in IEEE/RSJ Intl Conf. Intelligent
Robots and Systems, 2015, pp. 3131–3137.

11. D. Mellinger, “Trajectory generation and control for quadrotors,” Ph.D. disserta-
tion, University of Pennsylvania, 2012.

12. A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a swarm of agile
micro quadrotors,” Autonomous Robots, vol. 35, no. 4, pp. 287–300, 2013.

13. W. Hönig, T. K. S. Kumar, H. Ma, S. Koenig, and N. Ayanian, “Formation change
for robot groups in occluded environments,” in IEEE/RSJ Intl Conf. Intelligent
Robots and Systems, 2016.

14. T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadro-
tor UAV on SE(3),” in IEEE Conf. on Decision and Control, 2010, pp. 5420–5425.

	Flying Multiple UAVs Using ROS
	Introduction
	Target Platform
	Setup
	Setting PC Permissions
	Bitcraze Crazyflie PC Client
	Firmware
	Crazyflie ROS Stack

	Teleoperation of A Single Quadcopter
	Using an XBox360 Controller
	Add Support for Another Controller

	Teleoperation of Multiple UAVs
	Assigning A Unique Address
	Finding Good Communication Parameters
	ROS Usage (Multiple Crazyflies)

	Hovering
	Position Estimate
	ROS Usage (Single Crazyflie)
	ROS Usage (Multiple Crazyflies)

	Waypoint Following
	Troubleshooting
	Inside the crazyflie_ros Stack
	Overview
	crazyflie_cpp
	crazyflie_driver
	crazyflie_controller
	Possible Extensions

	Conclusion
	Authors' Biographies

