Downwash-Aware Trajectory Planning for Large Quadcopter Teams

James A. Preiss, Wolfgang Honig, Nora Ayanian, and Gaurav S. Sukhatme

Abstract— We describe a method for formation-change tra-
jectory planning for large quadcopter teams in obstacle-rich
environments. Our method decomposes planning into a discrete
graph-based stage and a continuous refinement that converts
the graph plans into smooth trajectories. We model downwash
directly, allowing safe flight in dense formations. We show
simulation results with up to 200 robots and a real-robot
experiment with 32 quadcopters. To our knowledge, our ap-
proach is the first solution which can compute safe and smooth
trajectories for hundreds of quadcopters in dense environments
with obstacles in a few minutes.

I. INTRODUCTION

Trajectory planning is a fundamental problem in multi-
robot systems. Consider a team of N robots in an en-
vironment defined by convex polytope W and containing
convex obstacles Oy ...Op,,., resulting in the obstacle-free
configuration space J for a single robot. We are given a start
position for each robot s* € F and a set of goal positions
G C F,|G| = N. We seek the following:

e« An assignment of each robot to a goal position
g‘f’(i) € (G, where ¢ is a permutation of 1,..., N

o The total time duration 7' € R until the last robot
reaches its goal

« For each robot r?, a trajectory f*: [0,T] — F where
f1(0) =s", fYT) = g®®, f* must be continuous up
to the C'"" derivative (where C is user-specified), and
collisions are avoided at all times for all robot pairs.

In particular, we are interested in solving this problem for
large teams of quadcopters in tight formations. To account
for the downwash force generated by one quadcopter’s air
stream on another, we treat each robot as an axis-aligned
ellipsoid of radii 0 < r, = r, < r,. Due to the differential
flatness of quadrotor dynamics, we focus on planning smooth
trajectories in 3D Euclidean space and ignore the yaw angle.

A large body of work has addressed this problem. Graph
search approaches (e.g. [1]) are adept at dealing with maze-
like environments and scenarios with high congestion. How-
ever, directly executing a graph plan results in a piecewise
linear path, requiring the robot to fully stop at each graph ver-
tex to maintain dynamic feasibility. Continuous approaches
[2], [3] address this issue, but they often tightly coupled,
solving one large optimization problem in which the decision
variables define all robots’ trajectories. These approaches are
typically demonstrated on smaller teams and do not scale up
to the size of team in which we are interested.

All authors are with the Department of Computer Science, University of
Southern California, Los Angeles, CA, USA.

Email: {japreiss, whoenig, ayanian, gaurav}@usc.edu

This work was partially supported by the ONR grants N00014-16-1-2907
and N00014-14-1-0734, and the ARL grant W911NF-14-D-0005.

Long exposure of 32 Crazyflie nano-quadrotors flying through a

Fig. 1.
wall with windows, viewed from the edge of the wall.

Our approach decomposes the formation change problem
into two steps. Discrete planning solves the goal assignment
problem (generating ¢) and computes a timed sequence of
waypoints for each robot in a graph approximation of the
environment. Continuous refinement uses the discrete plan
as a starting point to compute a set of smooth trajectories,
similar to [4] but adding support for three-dimensional
ellipsoidal robots, environmental obstacles, and an anytime
refinement stage to further improve the plan after generating
an initial set of smooth trajectories.

II. DISCRETE PLANNING STAGE

We model unlabeled planning as a variant of the unlabeled
Multi-Agent Path-Finding (MAPF) problem. We are given
an undirected connected graph of the environment Gp =
(Ve,EE), where each vertex v € Vg corresponds to a
location in F and each edge (u,v) € Eg denotes that there
is a linear path in F connecting » and v. Obstacles are
implicitly modeled by not including a vertex in Vg for each
cell that contains an obstacle. At each discrete timestep, a
robot can either wait at its current vertex or traverse an edge.
We seek paths p’ such that the following properties hold:

P1: Each robot starts at its start vertex.

P2: Each robot ends at a unique goal location.

P3: At each timestep, each robot either stays at its current
position or moves along an edge.

P4: There are no robots occupying the same location at the
same time (vertex collision).

P5: There are no robots traversing the same edge in opposite
directions (edge collision).

P6: Robots obey downwash constraints when stationary
(downwash vertex collision).

P7: Robots obey downwash constraints while traversing an
edge (downwash edge collision).

We consider a solution optimal if the makespan K is

TABLE I
RUNTIME FOR DIFFERENT EXAMPLES, SEE SECTION

Discrete Continuous

Grid Size K | tais || t1 | teon
13 x 13 x5 || 17s | 39s 3s | 19s
20 x 13 x5 || 26s | 60s 9s | 57s
29 x 29 x5 || 19s | b41ls || 36s | 239s

Example | N | Ngps |
usC 32 61

Maze50 | 50 | 441

Sort200 | 200 | 1320

minimal. If only the first five properties are considered and
K is given, unlabeled MAPF can be solved in polynomial
time by finding the maximum flow of a time-expanded
flow-graph [1]. This maximum-flow problem can also be
expressed as an Integer Linear Program (ILP), which allows
us to add additional constraints for P6 and P7.

In order to find an optimal solution for an unknown K,
we use a two-step approach. First, we find a lower bound
for K, by ignoring the downwash constraints. We search
the sequence K = 1,2,4,8,... for a feasible K, and
then perform a binary search to find the minimal feasible
K. Because we ignore the downwash constraints, we can
check the feasibility in polynomial time using the Edmonds-
Karp algorithm on the time-expanded flow-graph. Second,
we execute a linear search from the known lower bound,
solving the fully constrained ILP.

III. CONTINUOUS REFINEMENT STAGE

In the continuous refinement stage, we convert the way-
point sequences p’ generated by the discrete planner into
smooth trajectories f. We begin by finding safe corridors
within the free space F: The safe corridor for robot % is a
sequence of convex polyhedra P}, k € {1... K}, such that,
if each 7% travels within P}, during time interval [t;_1, tx],
both robot-robot and robot-obstacle collision avoidance are
guaranteed. The safe polyhedron P; is the intersection of:

e N — 1 half-spaces separating r* from r7 for j # i

e Nps half-spaces separating r* from O; ... Oy

obs*®

We compute these half-spaces by solving a modified version
of the hard-margin support vector machine problem that
accounts for the ellipsoid radii.

After computing safe corridors, we plan a smooth tra-
jectory fi(t) for each robot, contained within the robot’s
safe corridor. We represent these trajectories as piecewise
Bézier curves with one piece per time interval [tg,tg+1]- A
degree-D Bézier curve is defined by a sequence of D + 1
control points y; € R? and a fixed set of Bernstein polyno-
mials. The curve begins at yo and ends at yp. In between, it
is guaranteed to lie in the convex hull of all control points.
Thus, when using Bézier control points as decision variables
instead of monomial coefficients, constraining the control
points to lie inside a safe polyhedron guarantees that the
resulting polynomial will lie inside the polyhedron also.

We select an optimal Bézier trajectory by minimizing a
weighted combination of the integrated squared derivatives:

. c T
cost(f?) = gv /

where the . > 0 are user-chosen weights on the derivatives.

2

dt
2

e
i)

Fig. 2. Trajectory plans for “USC” formation change problem, executed
on real robots. See section [[V] for details.

The cost can be expressed as a quadratic function of the
control points. When combined with the linear corridor
constraints, it forms a quadratic program. We solve one
instance of this quadratic program per robot, in parallel.

We further improve these trajectories with an iferative
refinement stage. We use the smooth trajectories to define a
new corridor spatial decomposition based on sampled points
along each polynomial piece, producing new safe corridors
are roughly “centered” on the smooth trajectories rather than
on the discrete plan. We then repeat the same optimization
method to solve for a new set of smooth trajectories. Intu-
itively, iterative refinement provides a chance for the smooth
trajectories to move further towards a local optimum that was
not feasible under the original spatial decomposition.

IV. EXPERIMENTS

We evaluate our method on real robots with 32 Crazyflie
nano-quadcopters and in simulation for larger, more obstacle-
dense problems. A breakdown of the computation time for
all problems is given in Table [I|

In the real-robot task, the quadrotors begin in a grid in
the x — y plane, fly through a wall with three holes, and
form the letters “USC” in the air. The discrete planner plans
on a grid of 0.5m side length and finds a solution of K =
17 timesteps in 39 seconds (t4;5s). The continuous planner
needs three seconds to find the first set of smooth trajectories
(t1) and finishes six iterations of refinement after 19 seconds
(tcon)- After refinement, peak acceleration over all robots was
reduced from 5.2 to 1.6 m/s? and peak angular velocity was
reduced from 2.2 to 0.38 rad/s. The final set of 32 trajectories
is shown in Fig. [2]

REFERENCES

[1] J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots
on graphs,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
2013.

[2] E. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2012.

[3] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[4] S. Tang and V. Kumar, “Safe and complete trajectory generation for
robot teams with higher-order dynamics,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2016.

	INTRODUCTION
	DISCRETE PLANNING STAGE
	CONTINUOUS REFINEMENT STAGE
	EXPERIMENTS
	References

